Weak interpolation in extensions of the logics $S4$ and~$K4$
Algebra i logika, Tome 47 (2008) no. 6, pp. 705-722.

Voir la notice de l'article provenant de la source Math-Net.Ru

Conditions are specified which are necessary and sufficient for a logic over $K4$ to possess the weak interpolation property. For this goal to be met, simple transitive modal algebras are described, and we establish a criterion for the class of such algebras to be amalgamable. For extensions of $K4$, the weak interpolation property is proved decidable.
Keywords: weak interpolation property, modal logic, amalgamability.
@article{AL_2008_47_6_a2,
     author = {A. V. Karpenko},
     title = {Weak interpolation in extensions of the logics $S4$ and~$K4$},
     journal = {Algebra i logika},
     pages = {705--722},
     publisher = {mathdoc},
     volume = {47},
     number = {6},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2008_47_6_a2/}
}
TY  - JOUR
AU  - A. V. Karpenko
TI  - Weak interpolation in extensions of the logics $S4$ and~$K4$
JO  - Algebra i logika
PY  - 2008
SP  - 705
EP  - 722
VL  - 47
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2008_47_6_a2/
LA  - ru
ID  - AL_2008_47_6_a2
ER  - 
%0 Journal Article
%A A. V. Karpenko
%T Weak interpolation in extensions of the logics $S4$ and~$K4$
%J Algebra i logika
%D 2008
%P 705-722
%V 47
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2008_47_6_a2/
%G ru
%F AL_2008_47_6_a2
A. V. Karpenko. Weak interpolation in extensions of the logics $S4$ and~$K4$. Algebra i logika, Tome 47 (2008) no. 6, pp. 705-722. http://geodesic.mathdoc.fr/item/AL_2008_47_6_a2/

[1] D. M. Gabbay, L. Maksimova, Interpolation and definability. Modal and intuitionistic logics, Oxford Logic Guides, 46, Clarendon Press, Oxford Sci. Press, Oxford, 2005 | MR | Zbl

[2] L. Maksimova, “Definability and interpolation in non-classical logics”, Stud. Log., 82:2 (2006), 271–291 | DOI | MR | Zbl

[3] L. L. Maksimova, “Interpolyatsionnye teoremy v modalnykh logikakh i amalgamiruemye mnogoobraziya topobulevykh algebr”, Algebra i logika, 18:5 (1979), 556–586 | MR | Zbl

[4] L. L. Maksimova, “Interpolyatsiya v modalnykh logikakh beskonechnogo sloya, soderzhaschikh logiku $K4$”, Tr. In-ta matem. SO RAN, 12, 1989, 72–90 | MR

[5] A. V. Chagrov, “Nerazreshimye svoistva rasshirenii logiki dokazuemosti”, Algebra i logika, 29:5 (1990), 350–367 | MR | Zbl

[6] L. Maksimova, “On a form of interpolation in modal logic”, Logic Colloq., 2005, Bull. Symb. Log., 12:2 (2006), 340 | MR

[7] L. L. Maksimova, “Slabaya forma interpolyatsii v ekvatsionalnoi logike”, Algebra i logika, 47:1 (2008), 94–107 | MR | Zbl

[8] Kh. Raseva, R. Sikorskii, Matematika metamatematiki, Nauka, M., 1972 | MR

[9] S. S. Goncharov, Schëtnye bulevy algebry i razreshimost, Sibirskaya shkola algebry i logiki, Nauchnaya kniga (NII MIOO NGU), Novosibirsk, 1996 | MR | Zbl

[10] L. L. Maksimova, “Predtablichnye rasshireniya logiki Lyuisa $S4$”, Algebra i logika, 14:1 (1975), 28–55 | MR | Zbl

[11] P. A. Shrainer, “Avtomaticheskoe raspoznavanie interpolyatsii v modalnykh ischisleniyakh”, Algebra i logika, 46:1 (2007), 103–119 | MR

[12] A. V. Karpenko, Slaboe interpolyatsionnoe svoistvo v rasshireniyakh modalnoi logiki $S4$, dipl. rabota, Novosibirsk, 2007