Identities for Lie superalgebras with a~nilpotent commutator subalgebra
Algebra i logika, Tome 47 (2008) no. 5, pp. 617-645.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that the exponential growth rate of identities in any superalgebra with a nilpotent commutator subalgebra over a field of zero characteristic is an integer.
Keywords: Lie superalgebra, identity.
@article{AL_2008_47_5_a6,
     author = {M. V. Zaitsev and S. P. Mishchenko},
     title = {Identities for {Lie} superalgebras with a~nilpotent commutator subalgebra},
     journal = {Algebra i logika},
     pages = {617--645},
     publisher = {mathdoc},
     volume = {47},
     number = {5},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2008_47_5_a6/}
}
TY  - JOUR
AU  - M. V. Zaitsev
AU  - S. P. Mishchenko
TI  - Identities for Lie superalgebras with a~nilpotent commutator subalgebra
JO  - Algebra i logika
PY  - 2008
SP  - 617
EP  - 645
VL  - 47
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2008_47_5_a6/
LA  - ru
ID  - AL_2008_47_5_a6
ER  - 
%0 Journal Article
%A M. V. Zaitsev
%A S. P. Mishchenko
%T Identities for Lie superalgebras with a~nilpotent commutator subalgebra
%J Algebra i logika
%D 2008
%P 617-645
%V 47
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2008_47_5_a6/
%G ru
%F AL_2008_47_5_a6
M. V. Zaitsev; S. P. Mishchenko. Identities for Lie superalgebras with a~nilpotent commutator subalgebra. Algebra i logika, Tome 47 (2008) no. 5, pp. 617-645. http://geodesic.mathdoc.fr/item/AL_2008_47_5_a6/

[1] A. Giambruno, M. Zaicev, Polynomial identities and asymptotic methods, Math. Surv. Monogr., 122, Amer. Math. Soc., Providence, RI, 2005 | MR | Zbl

[2] A. Regev, “Existence of identities in $A\otimes B$”, Isr. J. Math., 11 (1972), 131–152 | DOI | MR | Zbl

[3] V. N. Latyshev, “K teoreme Regeva o tozhdestvakh tenzornogo proizvedeniya PI-algebr”, Uspekhi matem. nauk, 27:4(166) (1972), 213–214 | MR | Zbl

[4] A. Regev, “Codimensions and trace codimensions of matrices are asymptotically equal”, Isr. J. Math., 47 (1984), 246–250 | DOI | MR | Zbl

[5] A. Regev, “On the identities of subalgebras of matrices over the Grassmann algebra”, Isr. J. Math., 58 (1987), 351–369 | DOI | MR | Zbl

[6] A. Berele, A. Regev, “On the codimencions of the verbally prime P. I. algebras”, Isr. J. Math., 91:1–3 (1995), 239–247 | DOI | MR | Zbl

[7] A. Giambruno, M. Zaicev, “On codimension growth of finitely generated associative algebras”, Adv. Math., 140:2 (1998), 145–155 | DOI | MR | Zbl

[8] A. Giambruno, M. Zaicev, “Exponential codimension growth of PI-algebras: an exact estimate”, Adv. Math., 142:2 (1999), 221–243 | DOI | MR | Zbl

[9] A. R. Kemer, “Shpekhtovost T-idealov s polinomialnym rostom korazmernostei”, Sib. matem. zh., 19 (1978), 54–69 | MR | Zbl

[10] V. M. Petrogradskii, “O tipakh sverkheksponentsialnogo rosta tozhdestv v PI-algebrakh Li”, Fundam. prikl. matem., 1:4 (1995), 989–1007 | MR | Zbl

[11] V. M. Petrogradskii, “Rost polinilpotentnykh mnogoobrazii algebr Li i bystro rastuschie tselye funktsii”, Matem. sb., 188:6 (1997), 119–138 | MR | Zbl

[12] S. P. Mishchenko, V. M. Petrogradsky, “Exponents of varieties of Lie algebras with a nilpotent commutator subalgebra”, Commun. Algebra, 27:5 (1999), 2223–2230 | DOI | MR | Zbl

[13] A. Giambruno, A. Regev, M. Zaicev, “Simple and semisimple Lie algebras and codimension growth”, Trans. Amer. Math. Soc., 352:4 (2000), 1935–1946 | DOI | MR | Zbl

[14] A. Giambruno, A. Regev, M. Zaicev, “On the codimension growth of finite-dimensional Lie algebras”, J. Algebra, 220:2 (1999), 466–474 | DOI | MR | Zbl

[15] M. V. Zaitsev, “Tselochislennost eksponent rosta tozhdestv konechnomernykh algebr Li”, Izv. RAN. Ser. matem., 66:3 (2002), 23–48 | MR | Zbl

[16] S. P. Mischenko, “Nizhnie otsenki razmernostei neprivodimykh predstavlenii simmetricheskikh grupp i pokazateli eksponenty mnogoobrazii algebr Li”, Matem. sb., 187:1 (1996), 83–94 | MR | Zbl

[17] S. P. Mischenko, “Rost mnogoobrazii algebr Li”, Uspekhi matem. nauk, 45:6(276) (1990), 25–45 | MR | Zbl

[18] A. Regev, S. Mishchenko, M. Zaicev, “Integrality of exponents of some abelian-by-nilpotent varieties of Lie algebras”, Commun. Algebra, 28:9 (2000), 4105–4130 | DOI | MR | Zbl

[19] S. Mishchenko, M. Zaicev, “An example of a variety of Lie algebras with a fractional exponent”, J. Math. Sci. (New York), 93:6 (1999), 977–982 | DOI | MR | Zbl

[20] A. Giambruno, S. Mishchenko, M. Zaicev, “Codimensions of algebras and growth functions”, Adv. Math., 217:3 (2008), 1027–1052 | DOI | MR | Zbl

[21] A. Giambruno, S. Mishchenko, M. Zaicev, “Algebras with intermediate growth of the codimensions”, Adv. Appl. Math., 37:3 (2006), 360–377 | DOI | MR | Zbl

[22] M. V. Zaitsev, S. P. Mischenko, “Kriterii polinomialnosti rosta mnogoobrazii superalgebr Li”, Izv. RAN. Ser. matem., 62:5 (1998), 103–116 | MR | Zbl

[23] M. V. Zaitsev, S. P. Mischenko, “Rost nekotorykh mnogoobrazii superalgebr Li”, Izv. RAN. Ser. matem., 71:4 (2007), 3–18 | MR | Zbl

[24] Yu. A. Bakhturin, Tozhdestva v algebrakh Li, Nauka, M., 1985 | MR | Zbl

[25] Yu. P. Razmyslov, Tozhdestva algebr i ikh predstavlenii, Nauka, M., 1989 | MR | Zbl

[26] Yu. A. Bahturin, A. A. Mikhalev, V. M. Petrogradsky, M. V. Zaicev, Infinite-dimensional Lie superalgebras, De Gruyter Expo. Math., 7, W. de Gruyter, Berlin, 1992 | MR

[27] G. Dzheims, Teoriya predstavlenii simmetricheskikh grupp, Nauka, M., 1982 | MR

[28] A. Berele, A. Regev, “Applications of hook Young diagrams to P. I. algebras”, J. Algebra, 82:2 (1983), 559–567 | DOI | MR | Zbl

[29] M. Scheunert, The theory of Lie superalgebras. An introduction, Lect. Notes Math., 716, Springer-Verlag, Berlin a. o., 1979 | MR | Zbl

[30] S. P. Mischenko, “Mnogoobraziya algebr Li so slabym rostom posledovatelnosti korazmernostei”, Vestnik Mosk. un-ta. Ser. matem., mekhan., 1982, no. 5, 63–66 | Zbl

[31] M. V. Zaitsev, “Standartnoe tozhdestvo v spetsialnykh mnogoobraziyakh algebr Li”, Vestnik Mosk. un-ta. Ser. matem., mekhan., 1993, no. 1, 56–59 | MR | Zbl