Locally soluble infinite-dimensional linear groups with restrictions on nonAbelian subgroups of infinite ranks
Algebra i logika, Tome 47 (2008) no. 5, pp. 601-616

Voir la notice de l'article provenant de la source Math-Net.Ru

We are concerned with locally soluble linear groups of infinite central dimension and infinite sectional $p$-rank, $p\ge0$, in which every proper non-Abelian subgroup of infinite sectional $p$-rank has finite central dimension. It is proved that such groups are soluble.
Keywords: linear group, locally soluble group, solubility.
@article{AL_2008_47_5_a5,
     author = {O. Yu. Dashkova},
     title = {Locally soluble infinite-dimensional linear groups with restrictions on {nonAbelian} subgroups of infinite ranks},
     journal = {Algebra i logika},
     pages = {601--616},
     publisher = {mathdoc},
     volume = {47},
     number = {5},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2008_47_5_a5/}
}
TY  - JOUR
AU  - O. Yu. Dashkova
TI  - Locally soluble infinite-dimensional linear groups with restrictions on nonAbelian subgroups of infinite ranks
JO  - Algebra i logika
PY  - 2008
SP  - 601
EP  - 616
VL  - 47
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2008_47_5_a5/
LA  - ru
ID  - AL_2008_47_5_a5
ER  - 
%0 Journal Article
%A O. Yu. Dashkova
%T Locally soluble infinite-dimensional linear groups with restrictions on nonAbelian subgroups of infinite ranks
%J Algebra i logika
%D 2008
%P 601-616
%V 47
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2008_47_5_a5/
%G ru
%F AL_2008_47_5_a5
O. Yu. Dashkova. Locally soluble infinite-dimensional linear groups with restrictions on nonAbelian subgroups of infinite ranks. Algebra i logika, Tome 47 (2008) no. 5, pp. 601-616. http://geodesic.mathdoc.fr/item/AL_2008_47_5_a5/