Mots-clés : automorphism
@article{AL_2008_47_5_a4,
author = {A. L. Gavrilyuk and Wenbin Guo and A. A. Makhnev},
title = {Automorphisms of {Terwilliger} graphs with~$\mu=2$},
journal = {Algebra i logika},
pages = {584--600},
year = {2008},
volume = {47},
number = {5},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/AL_2008_47_5_a4/}
}
A. L. Gavrilyuk; Wenbin Guo; A. A. Makhnev. Automorphisms of Terwilliger graphs with $\mu=2$. Algebra i logika, Tome 47 (2008) no. 5, pp. 584-600. http://geodesic.mathdoc.fr/item/AL_2008_47_5_a4/
[1] A. E. Brouwer, A. M. Cohen, A. Neumaier, Distance-regular graphs, Ergebnisse der Mathematik und ihrer Grenzgebiete (3), 18, Springer-Verlag, Berlin etc., 1989 | MR | Zbl
[2] A. A. Makhnev, “O regulyarnykh grafakh Tervilligera s $\mu=2$”, Sib. matem. zh., 37:5 (1996), 1132–1134 | MR | Zbl
[3] A. E. Brouwer, W. H. Haemers, “The Gewirtz graph: an exercise in the theory of graph spectra”, Eur. J. Comb., 14:5 (1993), 397–407 | DOI | MR | Zbl
[4] A. A. Makhnev, D. V. Paduchikh, “Ob avtomorfizmakh grafa Ashbakhera”, Algebra i logika, 40:2 (2001), 125–134 | MR | Zbl
[5] P. J. Cameron, Permutation groups, Lond. Math. Soc. Stud. Texts, 45, Cambridge Univ. Press, Cambridge, 1999 | MR | Zbl
[6] P. J. Cameron, J. H. van Lint, Designs, graphs, codes and their links, Lond. Math. Soc. Stud. Texts, 22, Cambridge Univ. Press, Cambridge, 1991 | MR | Zbl