Automorphisms of Terwilliger graphs with~$\mu=2$
Algebra i logika, Tome 47 (2008) no. 5, pp. 584-600.

Voir la notice de l'article provenant de la source Math-Net.Ru

A description is furnished for automorphisms of prime order and subgraphs of their fixed points in distance-regular graphs with intersection arrays $\{50,42,1;1,2,50\}$ and $\{50,42,9;1,2,42\}$. It is proved that these graphs cannot be vertex-transitive.
Keywords: distance-regular graph, vertex-transitive graph.
Mots-clés : automorphism
@article{AL_2008_47_5_a4,
     author = {A. L. Gavrilyuk and Wenbin Guo and A. A. Makhnev},
     title = {Automorphisms of {Terwilliger} graphs with~$\mu=2$},
     journal = {Algebra i logika},
     pages = {584--600},
     publisher = {mathdoc},
     volume = {47},
     number = {5},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2008_47_5_a4/}
}
TY  - JOUR
AU  - A. L. Gavrilyuk
AU  - Wenbin Guo
AU  - A. A. Makhnev
TI  - Automorphisms of Terwilliger graphs with~$\mu=2$
JO  - Algebra i logika
PY  - 2008
SP  - 584
EP  - 600
VL  - 47
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2008_47_5_a4/
LA  - ru
ID  - AL_2008_47_5_a4
ER  - 
%0 Journal Article
%A A. L. Gavrilyuk
%A Wenbin Guo
%A A. A. Makhnev
%T Automorphisms of Terwilliger graphs with~$\mu=2$
%J Algebra i logika
%D 2008
%P 584-600
%V 47
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2008_47_5_a4/
%G ru
%F AL_2008_47_5_a4
A. L. Gavrilyuk; Wenbin Guo; A. A. Makhnev. Automorphisms of Terwilliger graphs with~$\mu=2$. Algebra i logika, Tome 47 (2008) no. 5, pp. 584-600. http://geodesic.mathdoc.fr/item/AL_2008_47_5_a4/

[1] A. E. Brouwer, A. M. Cohen, A. Neumaier, Distance-regular graphs, Ergebnisse der Mathematik und ihrer Grenzgebiete (3), 18, Springer-Verlag, Berlin etc., 1989 | MR | Zbl

[2] A. A. Makhnev, “O regulyarnykh grafakh Tervilligera s $\mu=2$”, Sib. matem. zh., 37:5 (1996), 1132–1134 | MR | Zbl

[3] A. E. Brouwer, W. H. Haemers, “The Gewirtz graph: an exercise in the theory of graph spectra”, Eur. J. Comb., 14:5 (1993), 397–407 | DOI | MR | Zbl

[4] A. A. Makhnev, D. V. Paduchikh, “Ob avtomorfizmakh grafa Ashbakhera”, Algebra i logika, 40:2 (2001), 125–134 | MR | Zbl

[5] P. J. Cameron, Permutation groups, Lond. Math. Soc. Stud. Texts, 45, Cambridge Univ. Press, Cambridge, 1999 | MR | Zbl

[6] P. J. Cameron, J. H. van Lint, Designs, graphs, codes and their links, Lond. Math. Soc. Stud. Texts, 22, Cambridge Univ. Press, Cambridge, 1991 | MR | Zbl