Recognition by spectrum for finite simple linear groups of small dimensions over fields of characteristic~2
Algebra i logika, Tome 47 (2008) no. 5, pp. 558-570.

Voir la notice de l'article provenant de la source Math-Net.Ru

Two groups are said to be isospectral if they share the same set of element orders. For every finite simple linear group $L$ of dimension $n$ over an arbitrary field of characteristic 2, we prove that any finite group $G$ isospectral to $L$ is isomorphic to an automorphic extension of $L$. An explicit formula is derived for the number of isomorphism classes of finite groups that are isospectral to $L$. This account is a continuation of the second author's previous paper where a similar result was established for finite simple linear groups $L$ in a sufficiently large dimension ($n>26$), and so here we confine ourselves to groups of dimension at most 26.
Keywords: finite simple group, linear group, order of element, spectrum of group, recognition by spectrum.
@article{AL_2008_47_5_a2,
     author = {A. V. Vasil'ev and M. A. Grechkoseeva},
     title = {Recognition by spectrum for finite simple linear groups of small dimensions over fields of characteristic~2},
     journal = {Algebra i logika},
     pages = {558--570},
     publisher = {mathdoc},
     volume = {47},
     number = {5},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2008_47_5_a2/}
}
TY  - JOUR
AU  - A. V. Vasil'ev
AU  - M. A. Grechkoseeva
TI  - Recognition by spectrum for finite simple linear groups of small dimensions over fields of characteristic~2
JO  - Algebra i logika
PY  - 2008
SP  - 558
EP  - 570
VL  - 47
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2008_47_5_a2/
LA  - ru
ID  - AL_2008_47_5_a2
ER  - 
%0 Journal Article
%A A. V. Vasil'ev
%A M. A. Grechkoseeva
%T Recognition by spectrum for finite simple linear groups of small dimensions over fields of characteristic~2
%J Algebra i logika
%D 2008
%P 558-570
%V 47
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2008_47_5_a2/
%G ru
%F AL_2008_47_5_a2
A. V. Vasil'ev; M. A. Grechkoseeva. Recognition by spectrum for finite simple linear groups of small dimensions over fields of characteristic~2. Algebra i logika, Tome 47 (2008) no. 5, pp. 558-570. http://geodesic.mathdoc.fr/item/AL_2008_47_5_a2/

[1] V. D. Mazurov, “Gruppy s zadannym spektrom”, Izv. Ural. gos. un-ta, 2005, no. 36 (Matem. mekhan., vyp. 7), 119–138 | MR

[2] M. A. Grechkoseeva, W. J. Shi, A. V. Vasilev, “Recognition by spectrum of finite simple groups of Lie type”, Front. Math. China, 3:2 (2008), 275–285 | DOI | MR | Zbl

[3] W. Shi, “A characteristic property of $J_1$ and $PSL_2(2^n)$”, Adv. Math., 16 (1987), 397–401 (Chinese) | MR | Zbl

[4] F. J. Liu, “A characteristic property of projective special linear group $L_3(8)$”, J. Southwest-China Normal Univ., 22:2 (1997), 131–134 (Chinese)

[5] V. D. Mazurov, M. Ch. Su, Kh. P. Chao, “Raspoznavanie konechnykh prostykh grupp $L_3(2^m)$ i $U_3(2^m)$ po poryadkam ikh elementov”, Algebra i logika, 39:5 (2000), 567–585 | MR | Zbl

[6] V. D. Mazurov, G. Yu. Chen, “Raspoznavaemost po spektru konechnykh prostykh grupp $L_4(2^m)$ i $U_4(2^m)$”, Algebra i logika, 47:1 (2008), 83–93 | MR | Zbl

[7] M. A. Grechkoseeva, W. J. Shi, A. V. Vasilev, “Recognition by spectrum of $L_{16}(2^m)$”, Algebra Colloq., 14:4 (2007), 585–591 | MR | Zbl

[8] M. A. Grechkoseeva, “Raspoznavanie po spektru konechnykh prostykh lineinykh grupp nad polyami kharakteristiki 2”, Algebra i logika, 47:4 (2008), 405–427 | Zbl

[9] A. V. Vasilev, M. A. Grechkoseeva, “O raspoznavanii po spektru konechnykh prostykh lineinykh grupp nad polyami kharakteristiki 2”, Sib. matem. zh., 46:4 (2005), 749–758 | MR | Zbl

[10] M. A. Grechkoseeva, M. S. Lucido, V. D. Mazurov, A. R. Moghaddamfar, A. V. Vasil'ev, “On recognition of the projective special linear groups over the binary field”, Sib. elektron. matem. izv., 2 (2005), 253–263 ; http//: semr.math.nsc.ru | MR | Zbl

[11] A. V. Zavarnitsin, V. D. Mazurov, “Poryadki elementov v nakrytiyakh konechnykh prostykh lineinykh i unitarnykh grupp i raspoznavaemost $L_n(2)$ po spektru”, Doklady RAN, 409:6 (2006), 736–739 | MR | Zbl

[12] A. V. Zavarnitsin, “Svoistva poryadkov elementov v nakrytiyakh grupp $L_n(q)$ i $U_n(q)$”, Sib. matem. zh., 49:2 (2008), 308–321 | MR | Zbl

[13] A. V. Vasilev, “O svyazi mezhdu stroeniem konechnoi gruppy i svoistvami eë grafa prostykh chisel”, Sib. matem. zh., 46:3 (2005), 511–522 | MR | Zbl

[14] A. V. Vasilev, I. B. Gorshkov, “O raspoznavanii konechnykh prostykh grupp so svyaznym grafom prostykh chisel”, Sib. matem. zh. (to appear)

[15] V. D. Mazurov, “Kharakterizatsiya konechnykh grupp mnozhestvami poryadkov ikh elementov”, Algebra i logika, 36:1 (1997), 37–53 | MR | Zbl

[16] A. A. Buturlakin, “Spektry konechnykh lineinykh i unitarnykh grupp”, Algebra i logika, 47:2 (2008), 157–173 | MR | Zbl

[17] K. Zsigmondy, “Zur Theorie der Potenzreste”, Monatsh. Math. Phys., 3 (1892), 265–284 | DOI | MR

[18] B. Huppert, N. Blackburn, Finite groups, II, Grundlehren math. Wiss., 242, Springer-Verlag, Berlin a.o., 1982 | MR | Zbl

[19] A. V. Vasilev, E. P. Vdovin, “Kriterii smezhnosti v grafe prostykh chisel konechnoi prostoi gruppy”, Algebra i logika, 44:6 (2005), 682–725 | MR | Zbl