Extensions of lattice-ordered groups
Algebra i logika, Tome 47 (2008) no. 5, pp. 529-540.

Voir la notice de l'article provenant de la source Math-Net.Ru

A number of conditions are specified which are sufficient for totally ordered groups with polycyclic factor group to contain a finite normal series of convex subgroups whose factors possess good enough properties. In any case studying such totally ordered groups is reduced to treating extensions of these groups as well as their virtually $o$-equivalent extensions. The concept of a virtually $o$-equivalent extension is a particular case of the notion of an Archimedean extension.
Keywords: totally ordered group, virtually $o$-equivalent extension, Archimedean extension.
@article{AL_2008_47_5_a0,
     author = {V. V. Bludov and V. M. Kopytov},
     title = {Extensions of lattice-ordered groups},
     journal = {Algebra i logika},
     pages = {529--540},
     publisher = {mathdoc},
     volume = {47},
     number = {5},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2008_47_5_a0/}
}
TY  - JOUR
AU  - V. V. Bludov
AU  - V. M. Kopytov
TI  - Extensions of lattice-ordered groups
JO  - Algebra i logika
PY  - 2008
SP  - 529
EP  - 540
VL  - 47
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2008_47_5_a0/
LA  - ru
ID  - AL_2008_47_5_a0
ER  - 
%0 Journal Article
%A V. V. Bludov
%A V. M. Kopytov
%T Extensions of lattice-ordered groups
%J Algebra i logika
%D 2008
%P 529-540
%V 47
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2008_47_5_a0/
%G ru
%F AL_2008_47_5_a0
V. V. Bludov; V. M. Kopytov. Extensions of lattice-ordered groups. Algebra i logika, Tome 47 (2008) no. 5, pp. 529-540. http://geodesic.mathdoc.fr/item/AL_2008_47_5_a0/

[1] F. Levi, “Contributions to the theory of ordered groups”, Proc. Indian Acad. Sci. Sect. A, 17 (1943), 199–201 | MR | Zbl

[2] D. M. Smirnov, “Infrainvariantnye podgruppy”, Uch. zap. Ivanovsk. gos. ped. in-ta, 4 (1953), 92–96 | MR | Zbl

[3] V. M. Kopytov, Reshetochno uporyadochennye gruppy, Nauka, M., 1984 | MR | Zbl

[4] V. V. Bludov, “Popolnenie lineino uporyadochennykh metabelevykh grupp”, Algebra i logika, 42:5 (2003), 542–565 | MR | Zbl

[5] N. Ya. Medvedev, “Razreshimye gruppy i mnogoobraziya $\ell$-grupp”, Algebra i logika, 44:3 (2005), 355–367 | MR | Zbl

[6] M. I. Kargapolov, Yu. I. Merzlyakov, Osnovy teorii grupp, Nauka, M., 1977 | MR | Zbl