The class of projective planes is noncomputable
Algebra i logika, Tome 47 (2008) no. 4, pp. 428-455

Voir la notice de l'article provenant de la source Math-Net.Ru

Computable projective planes are investigated. It is stated that a free projective plane of countable rank in some inessential expansion is unbounded. This implies that such a plane has infinite computable dimension. The class of all computable projective planes is proved to be noncomputable (up to computable isomorphism).
Keywords: computable projective plane, free projective plane, computable class of structures, computable dimension of structure.
@article{AL_2008_47_4_a1,
     author = {N. T. Kogabaev},
     title = {The class of projective planes is noncomputable},
     journal = {Algebra i logika},
     pages = {428--455},
     publisher = {mathdoc},
     volume = {47},
     number = {4},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2008_47_4_a1/}
}
TY  - JOUR
AU  - N. T. Kogabaev
TI  - The class of projective planes is noncomputable
JO  - Algebra i logika
PY  - 2008
SP  - 428
EP  - 455
VL  - 47
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2008_47_4_a1/
LA  - ru
ID  - AL_2008_47_4_a1
ER  - 
%0 Journal Article
%A N. T. Kogabaev
%T The class of projective planes is noncomputable
%J Algebra i logika
%D 2008
%P 428-455
%V 47
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2008_47_4_a1/
%G ru
%F AL_2008_47_4_a1
N. T. Kogabaev. The class of projective planes is noncomputable. Algebra i logika, Tome 47 (2008) no. 4, pp. 428-455. http://geodesic.mathdoc.fr/item/AL_2008_47_4_a1/