The class of projective planes is noncomputable
Algebra i logika, Tome 47 (2008) no. 4, pp. 428-455.

Voir la notice de l'article provenant de la source Math-Net.Ru

Computable projective planes are investigated. It is stated that a free projective plane of countable rank in some inessential expansion is unbounded. This implies that such a plane has infinite computable dimension. The class of all computable projective planes is proved to be noncomputable (up to computable isomorphism).
Keywords: computable projective plane, free projective plane, computable class of structures, computable dimension of structure.
@article{AL_2008_47_4_a1,
     author = {N. T. Kogabaev},
     title = {The class of projective planes is noncomputable},
     journal = {Algebra i logika},
     pages = {428--455},
     publisher = {mathdoc},
     volume = {47},
     number = {4},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2008_47_4_a1/}
}
TY  - JOUR
AU  - N. T. Kogabaev
TI  - The class of projective planes is noncomputable
JO  - Algebra i logika
PY  - 2008
SP  - 428
EP  - 455
VL  - 47
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2008_47_4_a1/
LA  - ru
ID  - AL_2008_47_4_a1
ER  - 
%0 Journal Article
%A N. T. Kogabaev
%T The class of projective planes is noncomputable
%J Algebra i logika
%D 2008
%P 428-455
%V 47
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2008_47_4_a1/
%G ru
%F AL_2008_47_4_a1
N. T. Kogabaev. The class of projective planes is noncomputable. Algebra i logika, Tome 47 (2008) no. 4, pp. 428-455. http://geodesic.mathdoc.fr/item/AL_2008_47_4_a1/

[1] A. I. Shirshov, A. A. Nikitin, “K teorii proektivnykh ploskostei”, Algebra i logika, 20:3 (1981), 330–356 | MR | Zbl

[2] A. I. Shirshov, “O ternare proektivnoi ploskosti”, Algebra i logika, 24:3 (1985), 365–370 | MR | Zbl

[3] A. A. Nikitin, “O gomomorfizmakh svobodno porozhdënnykh proektivnykh ploskostei”, Algebra i logika, 20:4 (1981), 419–426 | MR | Zbl

[4] A. A. Nikitin, “O svobodno porozhdënnykh proektivnykh ploskostyakh”, Algebra i logika, 22:1 (1983), 61–77 | MR

[5] A. A. Nikitin, “O nekotorykh algoritmicheskikh problemakh dlya proektivnykh ploskostei”, Algebra i logika, 23:5 (1984), 512–529 | MR | Zbl

[6] V. V. Vdovin, “O gomomorfizmakh proektivnykh ploskostei. I”, Sib. matem. zh., 27:1 (1986), 35–44 | MR | Zbl

[7] V. V. Vdovin, “O gomomorfizmakh proektivnykh ploskostei. II”, Sib. matem. zh., 27:4 (1986), 35–40 | MR | Zbl

[8] V. V. Vdovin, “Simple projective planes”, Arch. Math., 47:5 (1986), 469–480 | DOI | MR

[9] V. V. Vdovin, “Homomorphisms of freely generated projective planes”, Commun. Algebra, 16:11 (1988), 2209–2230 | DOI | MR | Zbl

[10] V. V. Vdovin, “Gomomorfizmy i algoritmicheskie problemy v proektivnykh ploskostyakh”, Sib. matem. zh., 32:6 (1991), 24–29 | MR | Zbl

[11] V. V. Vdovin, “Constructively presented projective planes”, Geom. Dedicata, 39:1 (1991), 115–123 | DOI | MR | Zbl

[12] A. I. Shirshov, A. A. Nikitin, Algebraicheskaya teoriya proektivnykh ploskostei, Novosib. gos. un-t, Novosibirsk, 1987 | MR | Zbl

[13] S. S. Goncharov, Yu. L. Ershov, Konstruktivnye modeli, Sibirskaya shkola algebry i logiki, Nauchnaya kniga, Novosibirsk, 1999

[14] S. S. Goncharov, “Avtoustoichivost modelei i abelevykh grupp”, Algebra i logika, 19:1 (1980), 23–44 | MR | Zbl

[15] Y. L. Ershov, S. S. Goncharov, A. Nerode, J. B. Remmel (eds.), Handbook of recursive mathematics, Vol. 1, 2, Stud. Logic Found. Math., 138–139, Elsevier Science B. V., Amsterdam, 1998 | MR