Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AL_2008_47_3_a2, author = {L. L. Maksimova and E. Orlowska}, title = {The {Beth} property and interpolation in lattice-based algebras and logics}, journal = {Algebra i logika}, pages = {307--334}, publisher = {mathdoc}, volume = {47}, number = {3}, year = {2008}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/AL_2008_47_3_a2/} }
L. L. Maksimova; E. Orlowska. The Beth property and interpolation in lattice-based algebras and logics. Algebra i logika, Tome 47 (2008) no. 3, pp. 307-334. http://geodesic.mathdoc.fr/item/AL_2008_47_3_a2/
[1] W. Dzik, E. Orlowska, C. van Alten, “Relational representation theorems for general lattices with negations”, Relations and Kleene algebra in computer science, Proc. 9th intern. conf. relational methods comput. sci. 4th intern. workshop appl. Kleene algebra (RelMiCS/AKA 2006, Manchester, UK, August 29 – September 2, 2006), Lect. Notes Comput. Sci., 4136, ed. Schmidt Renate A., Springer-Verlag, Berlin, 2006, 162–176 | MR | Zbl
[2] E. Orlowska, D. Vakarelov, “Latice-based modal algebras and modal logics”, Logic, methodology and philosophy of science, Proc. 12th intern. congress (Oviedo, Spain, August 2003), eds. Hajek Petr et al., King's College Publ., London, 2005, 147–170 | Zbl
[3] D. M. Gabbay, L. Maksimova, Interpolation and definability. Modal and intuitionistic logics, Oxford Logic Guides, 46, The Clarendon Press, Oxford University Press, Oxford, 2005 | MR | Zbl
[4] L. L. Maksimova, “Definability and interpolation in non-classical logics”, Stud. Log., 82:2 (2006), 271–291 | DOI | MR | Zbl
[5] W. Craig, “Three uses of Herbrand-Gentzen theorem in relating model theory and proof theory”, J. Symb. Log., 22:3 (1957), 269–285 | DOI | MR | Zbl
[6] B. Jonsson, “Extensions of relational structures”, Theory of models, Proc. 1963 int. symp. Berkeley, North-Holland, Amsterdam, 1965, 146–157 | MR
[7] D. Pigozzi, “Amalgamation, congruence extension and interpolation properties in algebras”, Algebra Univers., 1:3 (1972), 269–349 | MR | Zbl
[8] P. D. Bacsich, “Amalgamation properties and interpolation theorems for equational theories”, Algebra Univers., 5:1 (1975), 45–55 | DOI | MR | Zbl
[9] J. Barwise, S. Feferman (eds.), Model-theoretic logics, Perspect. Math. Log., Springer-Verlag, New York etc., 1985 | MR | Zbl
[10] E. W. Kiss, L. Márki, P. Pröhli, W. Tholen, “Categorical algebraic properties. A compendium on amalgamation, congruence extension, epimorphisms, residual smallness and injectivity”, Stud. Sci. Math. Hung., 18 (1983), 79–141 | MR | Zbl
[11] A. Wronski, “On a form of equational interpolation property”, Foundations of logic and linguistics, Sel. pap. 7th int. congr. logic, methodol. philos. sci. (Salzburg/Austria, 1983), 1985, 23–29 | MR | Zbl
[12] H. Ono, H. Ono, “Interpolation and the Robinson property for logics not closed under the Boolean operations”, Algebra Univers., 23:2 (1986), 111–122 | DOI | MR | Zbl
[13] I. Sain, “Beth's and Craig's properties via epimorphisms and amalgamation in algebraic logic”, Algebraic logic and universal algebra in computer science, Lect. Notes Comput. Sci., 425, eds. C. H. Bergman, R. D. Maddux, D. I. Pigozzi, Springer-Verlag, Berlin, 1990, 209–226 | MR
[14] L. L. Maksimova, “Modalnye logiki i mnogoobraziya modalnykh algebr: svoistvo Beta, interpolyatsiya i amalgamiruemost”, Algebra i logika, 31:2 (1992), 145–166 | MR | Zbl
[15] E. Hoogland, Definability and interpolation: Model-theoretic investigations, ILLC Diss. Ser. DS-2001-05, Amsterdam, 2001
[16] J. Czelakowski, D. Pigozzi, “Amalgamation and interpolation in abstract algebraic logic”, Models, algebras and proofs, Sel. papers X Latin Am. symp. math. logic held Bogota, Lect. Notes Pure Appl. Math., 203, eds. X. Caicedo, C. H. Montenegro, Marcel Dekker, New York, 1999, 187–265 | MR | Zbl
[17] L. L. Maksimova, “Weak interpolation in equational logic”, Logic Colloq. 2006 (Abstracts), Nijmegen, The Netherlands, 2006, 22–23
[18] L. Maksimova, “Interpolation and joint consistency”, We will show them! Essays in honour of Dov Gabbay, Vol. 2, eds. S. Artemov, H. Barringer, A. d'Avila Garcez, L. Lamb, J. Woods, King's College Publ., London, 2005, 293–305
[19] G. Grätzer, General Lattice Theory, Akademie-Verlag, Berlin, 1978 | Zbl
[20] G. Grätzer, H. Lakser, “The structure of pseudocomplemented distributive lattices. II: Congruence extension and amalgamation”, Trans. Am. Math. Soc., 156 (1971), 343–358 | DOI | MR | Zbl
[21] L. L. Maksimova, “Slabaya forma interpolyatsii v ekvatsionalnoi logike”, Algebra i logika, 47:1 (2008), 94–107 | MR
[22] E. W. Beth, “On Padoa's method in the theory of definitions”, Indag. Math., 15:4 (1953), 330–339 | MR
[23] G. Kreisel, “Explicit definability in intuitionistic logic”, J. Symb. Log., 25 (1960), 389–390 | DOI
[24] A. R. Anderson, N. D. Belnap, Entailment. The logic of relevance and necessity, Vol. I, Princeton Univ. Press, Princeton, NJ, 1975 | MR | Zbl
[25] A. I. Maltsev, Algebraicheskie sistemy, Nauka, M., 1970 | MR