Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AL_2008_47_3_a0, author = {Yu. L. Ershov}, title = {Stability preservation theorems}, journal = {Algebra i logika}, pages = {269--287}, publisher = {mathdoc}, volume = {47}, number = {3}, year = {2008}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/AL_2008_47_3_a0/} }
Yu. L. Ershov. Stability preservation theorems. Algebra i logika, Tome 47 (2008) no. 3, pp. 269-287. http://geodesic.mathdoc.fr/item/AL_2008_47_3_a0/
[1] Yu. L. Ershov, Kratno normirovannye polya, Sib. shkola algebry i logiki, Nauch. kniga, Novosibirsk, 2000
[2] Yu. L. Ershov, “O stabilnykh normirovannykh polyakh”, Algebra i logika, 46:6 (2007), 707–728 | MR
[3] Yu. L. Ershov, “Ruchnye i chisto dikie rasshireniya normirovannykh polei”, Algebra i analiz, 19:5 (2007), 124–136 | MR
[4] F.-V. Kuhlmann, Henselian function fields and tame fields, Manuscript, Heidelberg, 1990
[5] H. Grauert, R. Remmert, “Über die Methode der diskret bewerteten Rigne in der nicht-archimedischen Analysis”, Invent. Math., 2 (1966), 87–133 | DOI | MR | Zbl
[6] L. Gruson, “Fibrés vectoriels sur un polydisque ultramétrique”, Ann. Sci. Ec. Norm. Super. (4), 1:1 (1968), 45–89 | MR | Zbl
[7] S. Bosch, U. Güntzer, R. Remmert, Non-Archimedean analysis. A systematic approach to rigid analytic geometry, Grundl. Math. Wissenschaften, 261, Springer-Verlag, Berlin etc., 1984 | MR | Zbl
[8] J. Ohm, “The henselian defect for valued function fields”, Proc. Am. Math. Soc., 107:2 (1989), 299–308 | DOI | MR | Zbl
[9] Yu. L. Ershov, “Dve teoremy ob otsutstvii defekta u tsiklicheskikh rasshirenii”, Matem. tr., 10:2 (2007), 92–111 | MR
[10] S. Leng, Algebra, Mir, M., 1968