Stability preservation theorems
Algebra i logika, Tome 47 (2008) no. 3, pp. 269-287.

Voir la notice de l'article provenant de la source Math-Net.Ru

The basic result of the paper is the main theorem worded as follows. Let $\mathbb F=\langle F,R\rangle$ be a valued field such that $\mathbb F_R$ has characteristic $p>0$ and let $\mathbb F_0\ge\mathbb F$ be an extension of valued fields satisfying the following conditions: (i) there exists a set $B_0\subset R_0\setminus\mathfrak m(R_0)$ for which $\overline B_0\rightleftharpoons\{\overline b\rightleftharpoons b+\mathfrak m(R_0)\mid b\in B_0\}$ is a separating transcendence basis for a field $F_{R_0}$ over $F_R$; (ii) $\Gamma_R$ is $p$-pure in $\Gamma_{R_0}$, i.e., $\Gamma_{R_0}/\Gamma_R$ does not contain elements of order $p$; (iii) there exists a set $B_1\subset F^\times_0$ such that the family $\widetilde B_1\rightleftharpoons\{\widetilde b\rightleftharpoons v_{R_0}(b)+(p\Gamma_{R_0})\Gamma_R\mid b\in B_1\}$ is linearly independent in the elementary $p$-group $\Gamma_{R_0}/(p\Gamma_{R_0})\Gamma_R$; (iv) $F_0$ is algebraic over $F(B_0\cup B_1)$. Then the property of being stable for $\mathbb F$ implies being stable for $\mathbb F_0$.
Keywords: stable valued fiel, Henselization.
@article{AL_2008_47_3_a0,
     author = {Yu. L. Ershov},
     title = {Stability preservation theorems},
     journal = {Algebra i logika},
     pages = {269--287},
     publisher = {mathdoc},
     volume = {47},
     number = {3},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2008_47_3_a0/}
}
TY  - JOUR
AU  - Yu. L. Ershov
TI  - Stability preservation theorems
JO  - Algebra i logika
PY  - 2008
SP  - 269
EP  - 287
VL  - 47
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2008_47_3_a0/
LA  - ru
ID  - AL_2008_47_3_a0
ER  - 
%0 Journal Article
%A Yu. L. Ershov
%T Stability preservation theorems
%J Algebra i logika
%D 2008
%P 269-287
%V 47
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2008_47_3_a0/
%G ru
%F AL_2008_47_3_a0
Yu. L. Ershov. Stability preservation theorems. Algebra i logika, Tome 47 (2008) no. 3, pp. 269-287. http://geodesic.mathdoc.fr/item/AL_2008_47_3_a0/

[1] Yu. L. Ershov, Kratno normirovannye polya, Sib. shkola algebry i logiki, Nauch. kniga, Novosibirsk, 2000

[2] Yu. L. Ershov, “O stabilnykh normirovannykh polyakh”, Algebra i logika, 46:6 (2007), 707–728 | MR

[3] Yu. L. Ershov, “Ruchnye i chisto dikie rasshireniya normirovannykh polei”, Algebra i analiz, 19:5 (2007), 124–136 | MR

[4] F.-V. Kuhlmann, Henselian function fields and tame fields, Manuscript, Heidelberg, 1990

[5] H. Grauert, R. Remmert, “Über die Methode der diskret bewerteten Rigne in der nicht-archimedischen Analysis”, Invent. Math., 2 (1966), 87–133 | DOI | MR | Zbl

[6] L. Gruson, “Fibrés vectoriels sur un polydisque ultramétrique”, Ann. Sci. Ec. Norm. Super. (4), 1:1 (1968), 45–89 | MR | Zbl

[7] S. Bosch, U. Güntzer, R. Remmert, Non-Archimedean analysis. A systematic approach to rigid analytic geometry, Grundl. Math. Wissenschaften, 261, Springer-Verlag, Berlin etc., 1984 | MR | Zbl

[8] J. Ohm, “The henselian defect for valued function fields”, Proc. Am. Math. Soc., 107:2 (1989), 299–308 | DOI | MR | Zbl

[9] Yu. L. Ershov, “Dve teoremy ob otsutstvii defekta u tsiklicheskikh rasshirenii”, Matem. tr., 10:2 (2007), 92–111 | MR

[10] S. Leng, Algebra, Mir, M., 1968