Cayley graphs of the group $\mathbb Z^4$ and limits for minimal vertex-primitive graphs of $HA$-type
Algebra i logika, Tome 47 (2008) no. 2, pp. 203-214.

Voir la notice de l'article provenant de la source Math-Net.Ru

We point out a countable set of pairwise nonisomorphic Cayley graphs of the group $\mathbb Z^4$ that are limit for finite minimal vertex-primitive graphs admitting a vertex-primitive automorphism group containing a regular Abelian normal subgroup.
Keywords: vertex-primitive graph, limit graph, Cayley graph of free Abelian group.
@article{AL_2008_47_2_a4,
     author = {K. V. Kostousov},
     title = {Cayley graphs of the group $\mathbb Z^4$ and limits for minimal vertex-primitive graphs of $HA$-type},
     journal = {Algebra i logika},
     pages = {203--214},
     publisher = {mathdoc},
     volume = {47},
     number = {2},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2008_47_2_a4/}
}
TY  - JOUR
AU  - K. V. Kostousov
TI  - Cayley graphs of the group $\mathbb Z^4$ and limits for minimal vertex-primitive graphs of $HA$-type
JO  - Algebra i logika
PY  - 2008
SP  - 203
EP  - 214
VL  - 47
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2008_47_2_a4/
LA  - ru
ID  - AL_2008_47_2_a4
ER  - 
%0 Journal Article
%A K. V. Kostousov
%T Cayley graphs of the group $\mathbb Z^4$ and limits for minimal vertex-primitive graphs of $HA$-type
%J Algebra i logika
%D 2008
%P 203-214
%V 47
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2008_47_2_a4/
%G ru
%F AL_2008_47_2_a4
K. V. Kostousov. Cayley graphs of the group $\mathbb Z^4$ and limits for minimal vertex-primitive graphs of $HA$-type. Algebra i logika, Tome 47 (2008) no. 2, pp. 203-214. http://geodesic.mathdoc.fr/item/AL_2008_47_2_a4/

[1] M. Giudici, C. H. Li, C. E. Praeger, A. Seress, V. Trofimov, “On limit graphs of finite vertex-primitive graphs”, J. Comb. Th. Ser. A, 114 (2007), 110–134 | DOI | MR | Zbl

[2] K. V. Kostousov, “Grafy Keli gruppy $\mathbb Z^d$ i predely vershinno-primitivnykh grafov $HA$-tipa”, Sib. matem. zh., 48:3 (2007), 606–620 | MR