Symmetry of cuts in fields of formal power series
Algebra i logika, Tome 47 (2008) no. 2, pp. 174-185.

Voir la notice de l'article provenant de la source Math-Net.Ru

The theory of cuts is an effective tool for studying ordered fields. We continue research into the relationship between the structure of cuts in a field of formal power series and algebraic properties of the field.
Keywords: ordered field, cut in field of formal power series.
@article{AL_2008_47_2_a2,
     author = {N. Yu. Galanova and G. G. Pestov},
     title = {Symmetry of cuts in fields of formal power series},
     journal = {Algebra i logika},
     pages = {174--185},
     publisher = {mathdoc},
     volume = {47},
     number = {2},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2008_47_2_a2/}
}
TY  - JOUR
AU  - N. Yu. Galanova
AU  - G. G. Pestov
TI  - Symmetry of cuts in fields of formal power series
JO  - Algebra i logika
PY  - 2008
SP  - 174
EP  - 185
VL  - 47
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2008_47_2_a2/
LA  - ru
ID  - AL_2008_47_2_a2
ER  - 
%0 Journal Article
%A N. Yu. Galanova
%A G. G. Pestov
%T Symmetry of cuts in fields of formal power series
%J Algebra i logika
%D 2008
%P 174-185
%V 47
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2008_47_2_a2/
%G ru
%F AL_2008_47_2_a2
N. Yu. Galanova; G. G. Pestov. Symmetry of cuts in fields of formal power series. Algebra i logika, Tome 47 (2008) no. 2, pp. 174-185. http://geodesic.mathdoc.fr/item/AL_2008_47_2_a2/

[1] H. J. Dales, H. Woodin, Super-real fields. Totally ordered fields with additional structure, Lond. Math. Soc. Monogr. New Series, 14, Clarendon Press, Oxford, 1996 | MR | Zbl

[2] F. Khausdorf, Teoriya mnozhestv, Gostekhizdat, M., 1937

[3] G. G. Pestov, Stroenie uporyadochennykh polei, Izd-vo TGU, Tomsk, 1980 | MR

[4] F. Delon, “Plongement dense d'un corps ordonné dans sa clôture réelle”, J. Symb. Log., 56:3 (1991), 974–980 | DOI | MR | Zbl

[5] G. G. Pestov, “Simmetriya sechenii v uporyadochennom pole”, Izbr. dokl. mezhd. konf. “Vsesibirskie chteniya po matematike i mekhanike”, T. 1, Izd-vo TGU, Tomsk, 1997, 198–202

[6] G. G. Pestov, “K teorii sechenii v uporyadochennykh polyakh”, Sib. matem. zh., 42:6 (2001), 1350–1360 | MR | Zbl

[7] G. G. Pestov, K teorii uporyadochennykh polei i grupp, Dis. ... dokt. fiz.-mat. nauk, Tomsk, 2003

[8] N. Yu. Galanova, “Simmetriya sechenii v polyakh formalnykh stepennykh ryadov i nestandartnoi veschestvennoi pryamoi”, Algebra i logika, 42:1 (2003), 26–36 | MR | Zbl

[9] N. Yu. Galanova, “Symmetric and asymmetric gaps in fields of power series”, Serdica Math. J., 30:4 (2004), 495–504 | MR | Zbl

[10] N. Yu. Galanova, “An investigation of the fields of bounded formal power series by means of theory of cuts”, Acta Appl. Math., 85:1–3 (2005), 121–126 | DOI | MR | Zbl

[11] L. Fuchs, Partially ordered algebraic systems, Pergamon Press, Oxford–London–New York–Paris, 1963 | MR | Zbl

[12] N. Yu. Galanova, “O stroenii nestandartnoi veschestvennoi pryamoi”, Izbr. dokl. mezhd. konf. “Vsesibirskie chteniya po matematike i mekhanike”, T. 1, Izd-vo TGU, Tomsk, 1997, 63–78