Spectra of finite linear and unitary groups
Algebra i logika, Tome 47 (2008) no. 2, pp. 157-173.

Voir la notice de l'article provenant de la source Math-Net.Ru

The spectrum of a finite group is the set of its element orders. An arithmetic criterion determining whether a given natural number belongs to a spectrum of a given group is furnished for all finite special, projective general, and projective special linear and unitary groups.
Keywords: finite simple group, classical group, spectrum of group, linear group, unitary group.
@article{AL_2008_47_2_a1,
     author = {A. A. Buturlakin},
     title = {Spectra of finite linear and unitary groups},
     journal = {Algebra i logika},
     pages = {157--173},
     publisher = {mathdoc},
     volume = {47},
     number = {2},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2008_47_2_a1/}
}
TY  - JOUR
AU  - A. A. Buturlakin
TI  - Spectra of finite linear and unitary groups
JO  - Algebra i logika
PY  - 2008
SP  - 157
EP  - 173
VL  - 47
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2008_47_2_a1/
LA  - ru
ID  - AL_2008_47_2_a1
ER  - 
%0 Journal Article
%A A. A. Buturlakin
%T Spectra of finite linear and unitary groups
%J Algebra i logika
%D 2008
%P 157-173
%V 47
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2008_47_2_a1/
%G ru
%F AL_2008_47_2_a1
A. A. Buturlakin. Spectra of finite linear and unitary groups. Algebra i logika, Tome 47 (2008) no. 2, pp. 157-173. http://geodesic.mathdoc.fr/item/AL_2008_47_2_a1/

[1] D. M. Testerman, “$A_1$-type overgroups of order $p$ in semisimple algebraic groups and the associated finite groups”, J. Algebra, 177:1 (1995), 34–76 | DOI | MR | Zbl

[2] A. A. Buturlakin, M. A. Grechkoseeva, “Tsiklicheskoe stroenie maksimalnykh torov v konechnykh klassicheskikh gruppakh”, Algebra i logika, 46:2 (2007), 129–156 | MR

[3] R. W. Carter, Finite groups of Lie type. Conjugacy classes and complex characters, Pure Appl. Math., A Wiley-Interscience Publ., John Wiley and Sons, Chichester–New York etc., 1985 | MR | Zbl

[4] R. W. Carter, “Centralizers of semisimple elements in the finite classical groups”, Proc. Lond. Math. Soc. (3), 42:1 (1981), 1–41 | DOI | MR | Zbl

[5] R. W. Carter, “Centralizers of semisimple elements in finite groups of Lie type”, Proc. Lond. Math. Soc. (3), 37:3 (1978), 491–507 | DOI | MR | Zbl

[6] V. D. Mazurov, “Gruppy s zadannym spektrom”, Izv. Ural. gos. un-ta. Matem., mekh., 2005, no. 7(36), 119–138 | MR