Irreducible characters of the group $S_n$ that are semiproportional on~$A_n$
Algebra i logika, Tome 47 (2008) no. 2, pp. 135-156.

Voir la notice de l'article provenant de la source Math-Net.Ru

Previously, we dubbed the conjecture that the alternating group An has no semiproportional irreducible characters for any natural $n$ [1]. This conjecture was then shown to be equivalent to the following [3]. Let $\alpha$ and $\beta$ be partitions of a number $n$ such that their corresponding characters $\chi^\alpha$ and $\chi^\beta$ in the group $S_n$ are semiproportional on $A_n$. Then one of the partitions $\alpha$ or $\beta$ is self-associated. Here, we describe all pairs $(\alpha,\beta)$ of partitions satisfying the hypothesis and the conclusion of the latter conjecture.
Keywords: alternating group, irreducible character, semiproportional characters.
@article{AL_2008_47_2_a0,
     author = {V. A. Belonogov},
     title = {Irreducible characters of the group $S_n$ that are semiproportional on~$A_n$},
     journal = {Algebra i logika},
     pages = {135--156},
     publisher = {mathdoc},
     volume = {47},
     number = {2},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2008_47_2_a0/}
}
TY  - JOUR
AU  - V. A. Belonogov
TI  - Irreducible characters of the group $S_n$ that are semiproportional on~$A_n$
JO  - Algebra i logika
PY  - 2008
SP  - 135
EP  - 156
VL  - 47
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2008_47_2_a0/
LA  - ru
ID  - AL_2008_47_2_a0
ER  - 
%0 Journal Article
%A V. A. Belonogov
%T Irreducible characters of the group $S_n$ that are semiproportional on~$A_n$
%J Algebra i logika
%D 2008
%P 135-156
%V 47
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2008_47_2_a0/
%G ru
%F AL_2008_47_2_a0
V. A. Belonogov. Irreducible characters of the group $S_n$ that are semiproportional on~$A_n$. Algebra i logika, Tome 47 (2008) no. 2, pp. 135-156. http://geodesic.mathdoc.fr/item/AL_2008_47_2_a0/

[1] V. A. Belonogov, “O neprivodimykh kharakterakh grupp $S_n$ i $A_n$”, Sib. matem. zh., 45:5 (2004), 977–994 | MR | Zbl

[2] V. A. Belonogov, “O ravnokornevykh neprivodimykh kharakterakh grupp $S_n$ i $A_n$”, Algebra i logika, 46:1 (2007), 3–25 | MR

[3] V. A. Belonogov, “O nekotorykh parakh neprivodimykh kharakterov grupp $S_n$ i $A_n$”, Trudy In-ta matem. mekh. UrO RAN, 13:1 (2007), 11–43

[4] V. A. Belonogov, “O nekotorykh parakh neprivodimykh kharakterov grupp $S_n$”, Trudy In-ta matem. mekh. UrO RAN, 13:2 (2007), 13–32

[5] V. A. Belonogov, “O nulyakh v tablitsakh kharakterov grupp $S_n$ i $A_n$. II”, Algebra i logika, 44:6 (2005), 643–663 | MR | Zbl

[6] V. A. Belonogov, Predstavleniya i kharaktery v teorii konechnykh grupp, UrO AN SSSR, Sverdlovsk, 1990

[7] G. James, A. Kerber, The representation theory of the symmetric group, Encycl. Math. Appl., 16, Addison-Wesley Publ., Reading, MA, 1981 | MR | Zbl

[8] G. Dzheims, Teoriya predstavlenii simmetricheskikh grupp, Mir, M., 1982 | MR