Recognizability of finite simple groups $L_4(2^m)$ and $U_4(2^m)$ by spectrum
Algebra i logika, Tome 47 (2008) no. 1, pp. 83-93

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that finite simple groups $L_4(2^m)$, $m\ge2$, and $U_4(2^m)$, $m\ge2$, are, up to isomorphism, recognized by spectra, i.e., sets of their element orders, in the class of finite groups. As a consequence the question on recognizability by spectrum is settled for all finite simple groups without elements of order 8.
Keywords: finite simple group, spectrum of group.
@article{AL_2008_47_1_a4,
     author = {V. D. Mazurov and G. Y. Chen},
     title = {Recognizability of finite simple groups $L_4(2^m)$ and $U_4(2^m)$ by spectrum},
     journal = {Algebra i logika},
     pages = {83--93},
     publisher = {mathdoc},
     volume = {47},
     number = {1},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2008_47_1_a4/}
}
TY  - JOUR
AU  - V. D. Mazurov
AU  - G. Y. Chen
TI  - Recognizability of finite simple groups $L_4(2^m)$ and $U_4(2^m)$ by spectrum
JO  - Algebra i logika
PY  - 2008
SP  - 83
EP  - 93
VL  - 47
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2008_47_1_a4/
LA  - ru
ID  - AL_2008_47_1_a4
ER  - 
%0 Journal Article
%A V. D. Mazurov
%A G. Y. Chen
%T Recognizability of finite simple groups $L_4(2^m)$ and $U_4(2^m)$ by spectrum
%J Algebra i logika
%D 2008
%P 83-93
%V 47
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2008_47_1_a4/
%G ru
%F AL_2008_47_1_a4
V. D. Mazurov; G. Y. Chen. Recognizability of finite simple groups $L_4(2^m)$ and $U_4(2^m)$ by spectrum. Algebra i logika, Tome 47 (2008) no. 1, pp. 83-93. http://geodesic.mathdoc.fr/item/AL_2008_47_1_a4/