Crystallographic classes in a~4-dimensional Minkovskii space
Algebra i logika, Tome 47 (2008) no. 1, pp. 31-53.

Voir la notice de l'article provenant de la source Math-Net.Ru

On a crystallographic group, a condition of being topologically discrete is imposed which is weaker than is the conventional requirement for an action on space to be discontinuous. Isomorphism classification is given for crystallographic groups in three crystallographic classes in a 4-dimensional Minkovskii space, which are defined by unimodular subgroups of the general Lorentz group. In these classes are, respectively, 24, 36, and 68 crystallographic groups.
Keywords: crystallographic group, Minkovskii space, general Lorentz group.
@article{AL_2008_47_1_a1,
     author = {R. M. Garipov},
     title = {Crystallographic classes in a~4-dimensional {Minkovskii} space},
     journal = {Algebra i logika},
     pages = {31--53},
     publisher = {mathdoc},
     volume = {47},
     number = {1},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2008_47_1_a1/}
}
TY  - JOUR
AU  - R. M. Garipov
TI  - Crystallographic classes in a~4-dimensional Minkovskii space
JO  - Algebra i logika
PY  - 2008
SP  - 31
EP  - 53
VL  - 47
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2008_47_1_a1/
LA  - ru
ID  - AL_2008_47_1_a1
ER  - 
%0 Journal Article
%A R. M. Garipov
%T Crystallographic classes in a~4-dimensional Minkovskii space
%J Algebra i logika
%D 2008
%P 31-53
%V 47
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2008_47_1_a1/
%G ru
%F AL_2008_47_1_a1
R. M. Garipov. Crystallographic classes in a~4-dimensional Minkovskii space. Algebra i logika, Tome 47 (2008) no. 1, pp. 31-53. http://geodesic.mathdoc.fr/item/AL_2008_47_1_a1/

[1] R. M. Garipov, “Kristallograficheskie klassy v prostranstve Minkovskogo $R_{1,2}$”, Dokl. RAN, 409:3 (2006), 300–304 | MR | Zbl

[2] R. M. Garipov, “Kristallograficheskie klassy v prostranstve Minkovskogo $R_{1,2}$. I. Teoremy”, Sib. zh. indust. matem., 9:4 (2006), 33–49 | MR

[3] R. M. Garipov, “Kristallograficheskie klassy v prostranstve Minkovskogo $R_{1,2}$. II. Tablitsy grupp”, Sib. zh. indust. matem., 10:1 (2007), 62–70

[4] R. M. Garipov, “Gruppy ornamentov na ploskosti Minkovskogo”, Algebra i logika, 42:6 (2003), 655–682 | MR | Zbl

[5] R. M. Garipov, “Klassifikatsiya po izomorfizmu kristallograficheskikh grupp na psevdoevklidovoi ploskosti. I. Obschii sluchai”, Sib. zh. indust. matem., 6:4 (2003), 11–31 | MR | Zbl

[6] M. A. Naimark, Lineinye predstavleniya gruppy Lorentsa, Fizmatgiz, M., 1958 | MR

[7] E. B. Vinberg, “Diskretnye lineinye gruppy, porozhdennye otrazheniyami”, Izv. AN SSSR, ser. matem., 35:5 (1971), 1072–1112 | MR | Zbl

[8] E. B. Vinberg, “O gruppakh edinits nekotorykh kvadratichnykh form”, Matem. sb., 87:1 (1972), 18–36 | MR | Zbl

[9] G. Maxwell, “On the crystallography of infinite Coxeter groups”, Math. Proc. Camb. Philos. Soc., 82 (1977), 13–24 | DOI | MR | Zbl

[10] J. Hurrelbrink, U. Rehmann, “Zur endlichen Präsentation von Chevalley-Gruppen über den euklidischen imaginär-guadratischen Zahlringen”, Arch. der Math., 27:2 (1976), 123–133 | DOI | MR | Zbl

[11] O. V. Bogopolskii, Kombinatornaya teoriya grupp, ch. I, Izd-vo NGU, Novosibirsk, 2000

[12] R. M. Garipov, Algebraicheskii metod vychisleniya kristallograficheskikh grupp i rentgenostrukturnyi analiz kristallov, Izd-vo NGU, Novosibirsk, 2003