Freedom from the interpolation property for tense calculi associated with Ershov spaces
Algebra i logika, Tome 46 (2007) no. 6, pp. 745-762.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study into the question whether calculi associated with Ershov topological spaces possess Craig?s interpolation property.
Keywords: Craig interpolation property, Ershov topological space.
@article{AL_2007_46_6_a4,
     author = {V. F. Murzina},
     title = {Freedom from the interpolation property for tense calculi associated with {Ershov} spaces},
     journal = {Algebra i logika},
     pages = {745--762},
     publisher = {mathdoc},
     volume = {46},
     number = {6},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2007_46_6_a4/}
}
TY  - JOUR
AU  - V. F. Murzina
TI  - Freedom from the interpolation property for tense calculi associated with Ershov spaces
JO  - Algebra i logika
PY  - 2007
SP  - 745
EP  - 762
VL  - 46
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2007_46_6_a4/
LA  - ru
ID  - AL_2007_46_6_a4
ER  - 
%0 Journal Article
%A V. F. Murzina
%T Freedom from the interpolation property for tense calculi associated with Ershov spaces
%J Algebra i logika
%D 2007
%P 745-762
%V 46
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2007_46_6_a4/
%G ru
%F AL_2007_46_6_a4
V. F. Murzina. Freedom from the interpolation property for tense calculi associated with Ershov spaces. Algebra i logika, Tome 46 (2007) no. 6, pp. 745-762. http://geodesic.mathdoc.fr/item/AL_2007_46_6_a4/

[1] W. Craig, “Three uses of Herbrand–Gentzen theorem in relating model theory”, J. Symb. Log., 22:3 (1957), 269–285 | DOI | MR | Zbl

[2] D. M. Gabbay, L. Maksimova, Interpolation and definability. Modal and intuitionistic logics, Oxford Logic Guides, Oxford Sci. Publ., 46, Clarendon Press, Oxford, 2005 | MR | Zbl

[3] F. Wolter, “A note on the interpolation property in tense logic”, J. Philos. Log., 26:5 (1997), 545–551 | DOI | MR | Zbl

[4] Yu. L. Ershov, “Theory of domains and nearby”, Intern. Conf. Formal Methods Progr. Their Appl. (Novosibirsk, Russia), Lec. Not. Comp. Sci., 735, Springer-Verlag, Berlin etc., 1993, 1–7 | MR

[5] V. F. Murzina, “Modalnaya logika na osnove lineino uporyadochennykh $f$-prostranstv”, Algebra i logika, 42:3 (2003), 320–337 | MR | Zbl

[6] V. F. Murzina, “Vremennye logiki, polnye otnositelno strogo lineino uporyadochennykh $f$-modelei”, Vestnik NGU, 3:1 (2003), 61–82 | MR

[7] V. F. Murzina, “Modalnaya logika, polnaya otnositelno strogo lineino uporyadochennykh $A$-modelei”, Algebra i logika, 44:5 (2005), 560–582 | MR | Zbl

[8] V. F. Murzina, “Otsutstvie interpolyatsionnogo svoistva dlya ischislenii $L\alpha$ i $Lf$”, Sib. matem. zh. (to appear)

[9] D. Gabbay, Investigations in modal and tense logics with applications to problems in philosophy and linguistics, Synthese Library, 92, D. Reidel Publ. Co., Dordrecht-Boston, 1976 | MR | Zbl