Finite groups with subnormal Schmidt subgroups
Algebra i logika, Tome 46 (2007) no. 6, pp. 669-687.

Voir la notice de l'article provenant de la source Math-Net.Ru

We give a complete description of the structure of finite non-nilpotent groups all Schmidt subgroups of which are subnormal.
Keywords: finite group, Schmidt subgroup, subnormal subgroup.
Mots-clés : Frobenius group
@article{AL_2007_46_6_a0,
     author = {V. A. Vedernikov},
     title = {Finite groups with subnormal {Schmidt} subgroups},
     journal = {Algebra i logika},
     pages = {669--687},
     publisher = {mathdoc},
     volume = {46},
     number = {6},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2007_46_6_a0/}
}
TY  - JOUR
AU  - V. A. Vedernikov
TI  - Finite groups with subnormal Schmidt subgroups
JO  - Algebra i logika
PY  - 2007
SP  - 669
EP  - 687
VL  - 46
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2007_46_6_a0/
LA  - ru
ID  - AL_2007_46_6_a0
ER  - 
%0 Journal Article
%A V. A. Vedernikov
%T Finite groups with subnormal Schmidt subgroups
%J Algebra i logika
%D 2007
%P 669-687
%V 46
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2007_46_6_a0/
%G ru
%F AL_2007_46_6_a0
V. A. Vedernikov. Finite groups with subnormal Schmidt subgroups. Algebra i logika, Tome 46 (2007) no. 6, pp. 669-687. http://geodesic.mathdoc.fr/item/AL_2007_46_6_a0/

[1] O. Yu. Shmidt, “Gruppy, vse podgruppy kotorykh spetsialnye”, Matem. sb., 31 (1924), 366–372

[2] K. Iwasawa,, “Über die Struktur der endlichen Gruppen, deren echte Untergruppen sämtlich nilpotent sind”, Proc. Phys.-Math. Soc. Japan, III. Ser., 23 (1941), 1–4 | MR | Zbl

[3] Yu. A. Golfand, “O gruppakh, vse podgruppy kotorykh spetsialnye”, DAN SSSR, 60:8 (1948), 1313–1315 | MR | Zbl

[4] L. Redei, “Die endlichen einstufig nichtnilpotenten Gruppen”, Publ. Math., Debrecen., 1956, no. 4, 303–324 | MR | Zbl

[5] S. A. Chunikhin, Podgruppy konechnykh grupp, Nauka i tekhnika, Minsk, 1964

[6] V. D. Mazurov, S. A. Syskin, “O konechnykh gruppakh so spetsialnymi silovskimi 2-podgruppami”, Mat. zametki, 14 (1973), 217–222 | MR | Zbl

[7] A. Kh. Zhurtov, S. A. Syskin, “O gruppakh Shmidta”, Sib. matem. zh., 26 (1987), 74–78

[8] V. N. Semenchuk, “Konechnye gruppy s sistemoi minimalnykh ne $\mathfrak F$-podgrupp”, Podgruppovoe stroenie konechnykh grupp, Nauka i tekhnika, Minsk, 1981, 138–149

[9] L. A. Shemetkov, “O. Yu. Shmidt i konechnye gruppy”, Ukr. matem. zh., 23:5 (1971), 585–590

[10] L. A. Shemetkov, Formatsii konechnykh grupp, Nauka, M., 1978

[11] V. S. Monakhov, “Podgruppy Shmidta, ikh suschestvovanie i nekotorye prilozheniya”, Tr. Ukr. matem. kongr. (2001, Kiev, sektsiya 1), 2002, 81–90

[12] V. S. Monakhov, V. N. Knyagina, “O konechnykh gruppakh s nekotorymi subnormalnymi podgruppami Shmidta”, Sib. matem. zh., 45:6 (2004), 1316–1322 | Zbl

[13] V. T. Nagrebetskii, “Konechnye gruppy, lyubaya nenilpotentnaya podgruppa kotorykh invariantna”, Matem. zap. Ural. un-ta, 6:3 (1968), 45–49 | MR

[14] Y. G. Berkovich, L. S. Kazarin, “Indices of elements and normal structure of finite groups”, J. Algebra, 283:2 (2005), 564–583 | DOI | MR | Zbl

[15] B. Huppert, Endliche Gruppen. I, Grundl. math. Wissensch. Einzeldarst., 134, Springer-Verlag, Berlin-Heidelberg-New York, 1967 | MR | Zbl

[16] M. Kholl, Teoriya grupp, IL, M., 1962

[17] K. Doerk, T. Nawkes, Finite soluble groups, De Gruyter Expos. Math., 4, W. de Gruyter, Berlin etc., 1992 | MR | Zbl

[18] V. A. Vedernikov, “Podpryamye proizvedeniya i formatsii konechnykh grupp”, Algebra i logika, 29:5 (1990), 523–548 | Zbl

[19] V. A. Vedernikov, “O $\pi$-svoistvakh konechnykh grupp”, Arifmeticheskoe i podgruppovoe stroenie konechnykh grupp, Nauka i tekhnika, Minsk, 1986, 13–19 | MR