A~method of proving interpolation in paraconsistent extensions of the minimal logic
Algebra i logika, Tome 46 (2007) no. 5, pp. 627-648.

Voir la notice de l'article provenant de la source Math-Net.Ru

The interpolation property in extensions of Johansson's minimal logic is investigated. The construction of a matched product of models is proposed, which allows us to prove the interpolation property in a number of known extensions of the minimal logic. It is shown that, unlike superintuitionistic, positive, and negative logics, a sum of $\mathrm J$-logics with the interpolation property CIP may fail to possess CIP, nor even the restricted interpolation property.
Keywords: interpolation property, Johansson's minimal logic.
Mots-clés : paraconsistent extension
@article{AL_2007_46_5_a5,
     author = {L. L. Maksimova},
     title = {A~method of proving interpolation in paraconsistent extensions of the minimal logic},
     journal = {Algebra i logika},
     pages = {627--648},
     publisher = {mathdoc},
     volume = {46},
     number = {5},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2007_46_5_a5/}
}
TY  - JOUR
AU  - L. L. Maksimova
TI  - A~method of proving interpolation in paraconsistent extensions of the minimal logic
JO  - Algebra i logika
PY  - 2007
SP  - 627
EP  - 648
VL  - 46
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2007_46_5_a5/
LA  - ru
ID  - AL_2007_46_5_a5
ER  - 
%0 Journal Article
%A L. L. Maksimova
%T A~method of proving interpolation in paraconsistent extensions of the minimal logic
%J Algebra i logika
%D 2007
%P 627-648
%V 46
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2007_46_5_a5/
%G ru
%F AL_2007_46_5_a5
L. L. Maksimova. A~method of proving interpolation in paraconsistent extensions of the minimal logic. Algebra i logika, Tome 46 (2007) no. 5, pp. 627-648. http://geodesic.mathdoc.fr/item/AL_2007_46_5_a5/

[1] W. Craig, “Three uses of the Herbrand-Gentzen theorem in relating model theory and proof theory”, J. Symb. Log., 22:3 (1957), 269–285 | DOI | MR | Zbl

[2] K. Schütte, “Der Interpolationssatz der intuitionistischen Prädikatenlogik”, Math. Ann., 148 (1962), 192–200 | DOI | MR | Zbl

[3] L. L. Maksimova, “Interpolyatsionnye teoremy v modalnykh logikakh. Dostatochnye usloviya”, Algebra i logika, 19:2 (1980), 194–213 | MR | Zbl

[4] L. L. Maksimova, “Teorema Kreiga v superintuitsionistskikh logikakh i amalgamiruemye mnogoobraziya psevdobulevykh algebr”, Algebra i logika, 16:6 (1977), 643–681 | MR | Zbl

[5] L. L. Maksimova, “Interpolyatsionnaya teorema Kreiga i amalgamiruemye mnogoobraziya”, Doklady AN SSSR, 237:6 (1977), 1281–1284 | MR | Zbl

[6] L. L. Maksimova, “Neyavnaya opredelimost v pozitivnykh logikakh”, Algebra i logika, 42:1 (2003), 65–93 | MR | Zbl

[7] L. L. Maksimova, “Interpolyatsiya i opredelimost v rasshireniyakh minimalnoi logiki”, Algebra i logika, 44:6 (2005), 726–750 | MR | Zbl

[8] L. Maksimova, “Restricted interpolation in modal logics”, Advances in modal logic, Vol. 4, Selected papers 4th conf. (Toulouse, France, October 2002), eds. Ph. Balbiani et al., King's College Publ., London, 2003, 297–311 | MR | Zbl

[9] K. Segerberg, “Propositional logics related to Heyting's and Johansson's”, Theoria, 34 (1968), 26–61 | MR

[10] M. V. Stukacheva, “O diz'yunktivnom svoistve v klasse paraneprotivorechivykh rasshirenii minimalnoi logiki”, Algebra i logika, 43:2 (2004), 235–252 | MR | Zbl

[11] H. Rasiowa, R. Sikorski, The mathematics of metamathematics, PWN, Warszawa, 1963 | MR

[12] S. Odintsov, “Logic of classical refutability and class of extensions of minimal logic”, Log. Log. Philos., 9 (2001), 91–107 | MR | Zbl