$\delta$-Derivations of simple finite-dimensional Jordan superalgebras
Algebra i logika, Tome 46 (2007) no. 5, pp. 585-605.

Voir la notice de l'article provenant de la source Math-Net.Ru

We describe non-trivial $\delta$-derivations of semisimple finite-dimensional Jordan algebras over an algebraically closed field of characteristic not 2, and of simple finite-dimensional Jordan superalgebras over an a gebraically closed field of characteristic 0. For these classes of algebras and superalgebras, non-zero $\delta$-derivations are shown to be missing for $\delta\ne0,1/2,1$, and we give a complete account of 1/2-derivations.
Keywords: $\delta$-derivation, simple finite-dimensional Jordan superalgebra.
@article{AL_2007_46_5_a3,
     author = {I. B. Kaygorodov},
     title = {$\delta${-Derivations} of simple finite-dimensional {Jordan} superalgebras},
     journal = {Algebra i logika},
     pages = {585--605},
     publisher = {mathdoc},
     volume = {46},
     number = {5},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2007_46_5_a3/}
}
TY  - JOUR
AU  - I. B. Kaygorodov
TI  - $\delta$-Derivations of simple finite-dimensional Jordan superalgebras
JO  - Algebra i logika
PY  - 2007
SP  - 585
EP  - 605
VL  - 46
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2007_46_5_a3/
LA  - ru
ID  - AL_2007_46_5_a3
ER  - 
%0 Journal Article
%A I. B. Kaygorodov
%T $\delta$-Derivations of simple finite-dimensional Jordan superalgebras
%J Algebra i logika
%D 2007
%P 585-605
%V 46
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2007_46_5_a3/
%G ru
%F AL_2007_46_5_a3
I. B. Kaygorodov. $\delta$-Derivations of simple finite-dimensional Jordan superalgebras. Algebra i logika, Tome 46 (2007) no. 5, pp. 585-605. http://geodesic.mathdoc.fr/item/AL_2007_46_5_a3/

[1] N. Dzhekobson, Algebry Li, Mir, M., 1964 | MR

[2] I. N. Herstein, “Jordan derivations of prime rings”, Proc. Am. Math. Soc., 8 (1958), 1104–1110 | DOI | MR | Zbl

[3] N. C. Hopkins, “Generalized derivations of nonassociative algebras”, Nova J. Math. Game Theory Algebra, 5:3 (1996), 215–224 | MR | Zbl

[4] V. T. Filippov, “O $\delta$-differentsirovaniyakh pervichnykh algebr Li”, Sib. matem. zh., 40:1 (1999), 201–213 | MR | Zbl

[5] V. T. Filippov, “O $\delta$-differentsirovaniyakh pervichnykh alternativnykh i maltsevskikh algebr”, Algebra i logika, 39:5 (2000), 618–625 | MR | Zbl

[6] K. A. Zhevlakov, A. M. Slinko, I. P. Shestakov, A. I. Shirshov, Iordanovy algebry, Izd-vo NGU, Novosibirsk, 1978

[7] C. T. C. Wall, “Graded Brauer groups”, J. Reine Angew. Math., 213 (1964), 187–199 | MR | Zbl

[8] I. L. Kantor, “Iordanovy i lievy superalgebry, opredelyaemye algebroi Puassona”, Algebra i analiz, Izd-vo TGU, Tomsk, 1989, 55–80 | MR

[9] V. G. Kac, “Classification of simple Z-graded Lie superalgebras and simple Jordan superalgebras”, Comm. Algebra, 5 (1977), 1375–1400 | DOI | MR | Zbl

[10] M. L. Racine, E. I. Zel'manov, “Simple Jordan superalgebras”, Non-associative algebra and its applications, 3rd international conference (Oviedo, Spain, July 12th–17th, 1993), Math. Appl., Dordr., 303, ed. S. Gonzalez, Kluwer Academic Publ., Dordrecht, 1994, 344–349 | MR | Zbl

[11] E. I. Zelmanov, “O pervichnykh iordanovykh algebrakh. II”, Sib. matem. zh., 24:1 (1983), 89–104 | MR

[12] V. T. Filippov, “O $\delta$-differentsirovaniyakh algebr Li”, Sib. matem. zh., 39:6 (1998), 1409–1422 | MR | Zbl