The Chevalley and Costant theorems for Mal'tsev algebras
Algebra i logika, Tome 46 (2007) no. 5, pp. 560-584
Voir la notice de l'article provenant de la source Math-Net.Ru
Centers of universal envelopes for Mal'tsev algebras are explored. It is proved that the center of the universal envelope for a finite-dimensional semisimple Mal'tsev algebra over a field of characteristic 0 is a ring of polynomials in a finite number of variables equal to the dimension of its Cartan subalgebra, and that universal enveloping algebra is a free module over its center. Centers of universal enveloping algebras are computed for some Mal'tsev algebras of small dimensions.
Keywords:
Lie algebra, Mal'tsev algebra, bialgebra, universal enveloping algebra, primitive elements, center of algebra, Chevalley theorem, Costant theorem.
@article{AL_2007_46_5_a2,
author = {V. N. Zhelyabin and I. P. Shestakov},
title = {The {Chevalley} and {Costant} theorems for {Mal'tsev} algebras},
journal = {Algebra i logika},
pages = {560--584},
publisher = {mathdoc},
volume = {46},
number = {5},
year = {2007},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/AL_2007_46_5_a2/}
}
V. N. Zhelyabin; I. P. Shestakov. The Chevalley and Costant theorems for Mal'tsev algebras. Algebra i logika, Tome 46 (2007) no. 5, pp. 560-584. http://geodesic.mathdoc.fr/item/AL_2007_46_5_a2/