Algebraic sets in metabelian groups
Algebra i logika, Tome 46 (2007) no. 4, pp. 503-513
Cet article a éte moissonné depuis la source Math-Net.Ru
The research launched in [Algebra i Logika, 44, No 5 (2005), 601–621] is brought to a close by examining algebraic sets in a metabelian group $G$ in two important cases: (1) $G=F_n$ is a free metabelian group of rank $n$; (2) $G=W_{n,k}$ is a wreath product of free Abelian groups of ranks $n$ and $k$.
Keywords:
algebraic set, metabelian group.
@article{AL_2007_46_4_a5,
author = {N. S. Romanovskii},
title = {Algebraic sets in metabelian groups},
journal = {Algebra i logika},
pages = {503--513},
year = {2007},
volume = {46},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/AL_2007_46_4_a5/}
}
N. S. Romanovskii. Algebraic sets in metabelian groups. Algebra i logika, Tome 46 (2007) no. 4, pp. 503-513. http://geodesic.mathdoc.fr/item/AL_2007_46_4_a5/
[1] V. N. Remeslennikov, N. S. Romanovskii, “Neprivodimye algebraicheskie mnozhestva v metabelevoi gruppe”, Algebra i logika, 44:5 (2005), 601–621 | MR | Zbl
[2] G. Baumslag, A. Myasnikov, V. Remeslennikov, “Algebraic geometry over groups. I: Algebraic sets and ideal theory”, J. Algebra, 219:1 (1999), 16–79 | DOI | MR | Zbl
[3] A. Myasnikov, V. Remeslennikov, “Algebraic geometry over groups. II: Logical foundations”, J. Algebra, 234:1 (2000), 225–276 | DOI | MR | Zbl