Isomorphically rigid algebras
Algebra i logika, Tome 46 (2007) no. 4, pp. 483-502.

Voir la notice de l'article provenant de la source Math-Net.Ru

Various classes of non-associative algebras possessing the property of being rigid under abstract isomorphisms are studied.
Keywords: non-associative algebra, rigidity.
@article{AL_2007_46_4_a4,
     author = {K. N. Ponomarev},
     title = {Isomorphically rigid algebras},
     journal = {Algebra i logika},
     pages = {483--502},
     publisher = {mathdoc},
     volume = {46},
     number = {4},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2007_46_4_a4/}
}
TY  - JOUR
AU  - K. N. Ponomarev
TI  - Isomorphically rigid algebras
JO  - Algebra i logika
PY  - 2007
SP  - 483
EP  - 502
VL  - 46
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2007_46_4_a4/
LA  - ru
ID  - AL_2007_46_4_a4
ER  - 
%0 Journal Article
%A K. N. Ponomarev
%T Isomorphically rigid algebras
%J Algebra i logika
%D 2007
%P 483-502
%V 46
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2007_46_4_a4/
%G ru
%F AL_2007_46_4_a4
K. N. Ponomarev. Isomorphically rigid algebras. Algebra i logika, Tome 46 (2007) no. 4, pp. 483-502. http://geodesic.mathdoc.fr/item/AL_2007_46_4_a4/

[1] K. N. Ponomarev, “Polya predstavitelei kommutativnykh lokalnykh kolets i maksimalnye polya skalyarov konechnomernykh algebr”, Algebra i logika, 37:6 (1998), 667–686 | MR | Zbl

[2] K. N. Ponomarev, “Avtomorfizmy tenzornykh popolnenii algebr”, Algebra i logika, 44:3 (2005), 368–382 | MR | Zbl

[3] K. N. Ponomarev, “Automorphisms group of an invariant subalgebra of a reductive Lie algebra”, Acta Appl. Math., 85:1-3 (2005), 251–255 | DOI | MR | Zbl

[4] A. G. Myasnikov, V. N. Remeslennikov, “Opredelimost mnozhestva maltsevskikh baz i elementarnye teorii konechnomernykh algebr”, Sib. matem. zh., 24:2 (1983), 97–113 | MR | Zbl

[5] O. Zarisskii, P. Samyuel, Kommutativnaya algebra, T. 2, IL, M.

[6] S. Leng, Algebra, Mir, M., 1968

[7] K. N. Ponomarev, “Invariantnye algebry Li i algebry Li s malym tsentroidom”, Algebra i logika, 40:6 (2001), 651–674 | MR | Zbl

[8] K. N. Ponomarev, “Some generalization of Melville theorem”, Algebra, arithmetic and geometry with applications, Springer-Verlag, Berlin a. o., 2004, 667–672 | MR