Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AL_2007_46_4_a4, author = {K. N. Ponomarev}, title = {Isomorphically rigid algebras}, journal = {Algebra i logika}, pages = {483--502}, publisher = {mathdoc}, volume = {46}, number = {4}, year = {2007}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/AL_2007_46_4_a4/} }
K. N. Ponomarev. Isomorphically rigid algebras. Algebra i logika, Tome 46 (2007) no. 4, pp. 483-502. http://geodesic.mathdoc.fr/item/AL_2007_46_4_a4/
[1] K. N. Ponomarev, “Polya predstavitelei kommutativnykh lokalnykh kolets i maksimalnye polya skalyarov konechnomernykh algebr”, Algebra i logika, 37:6 (1998), 667–686 | MR | Zbl
[2] K. N. Ponomarev, “Avtomorfizmy tenzornykh popolnenii algebr”, Algebra i logika, 44:3 (2005), 368–382 | MR | Zbl
[3] K. N. Ponomarev, “Automorphisms group of an invariant subalgebra of a reductive Lie algebra”, Acta Appl. Math., 85:1-3 (2005), 251–255 | DOI | MR | Zbl
[4] A. G. Myasnikov, V. N. Remeslennikov, “Opredelimost mnozhestva maltsevskikh baz i elementarnye teorii konechnomernykh algebr”, Sib. matem. zh., 24:2 (1983), 97–113 | MR | Zbl
[5] O. Zarisskii, P. Samyuel, Kommutativnaya algebra, T. 2, IL, M.
[6] S. Leng, Algebra, Mir, M., 1968
[7] K. N. Ponomarev, “Invariantnye algebry Li i algebry Li s malym tsentroidom”, Algebra i logika, 40:6 (2001), 651–674 | MR | Zbl
[8] K. N. Ponomarev, “Some generalization of Melville theorem”, Algebra, arithmetic and geometry with applications, Springer-Verlag, Berlin a. o., 2004, 667–672 | MR