Minimal non-group twisted subsets containing involutions
Algebra i logika, Tome 46 (2007) no. 4, pp. 459-482.

Voir la notice de l'article provenant de la source Math-Net.Ru

A subset $K$ of a group $G$ is said to be twisted if $1\in K$ and $xy^{-1}x\in K$ for any $x,y\in K$. We explore finite twisted subsets with involutions which are themselves not subgroups but every proper twisted subset of which is. Groups that are generated by such twisted subsets are classified.
Keywords: involution, twisted subset, twisted subgroup.
@article{AL_2007_46_4_a3,
     author = {A. L. Myl'nikov},
     title = {Minimal non-group twisted subsets containing involutions},
     journal = {Algebra i logika},
     pages = {459--482},
     publisher = {mathdoc},
     volume = {46},
     number = {4},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2007_46_4_a3/}
}
TY  - JOUR
AU  - A. L. Myl'nikov
TI  - Minimal non-group twisted subsets containing involutions
JO  - Algebra i logika
PY  - 2007
SP  - 459
EP  - 482
VL  - 46
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2007_46_4_a3/
LA  - ru
ID  - AL_2007_46_4_a3
ER  - 
%0 Journal Article
%A A. L. Myl'nikov
%T Minimal non-group twisted subsets containing involutions
%J Algebra i logika
%D 2007
%P 459-482
%V 46
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2007_46_4_a3/
%G ru
%F AL_2007_46_4_a3
A. L. Myl'nikov. Minimal non-group twisted subsets containing involutions. Algebra i logika, Tome 46 (2007) no. 4, pp. 459-482. http://geodesic.mathdoc.fr/item/AL_2007_46_4_a3/

[1] A. L. Mylnikov, “Konechnye perekruchennye gruppy”, Sib. matem. zh., 48:2 (2007), 369–375 | MR

[2] M. Aschbacher, “Near subgroups of finite groups”, J. Group Theory, 1:2 (1998), 113–129 | DOI | MR | Zbl

[3] A. L. Mylnikov, “Konechnye minimalnye neperekruchennye gruppy”, Vestnik Krasnoyarskogo gos. un-ta, 2005, no. 1, 71–76

[4] A. L. Mylnikov, “Abelevy perekruchennye gruppy”, Matem. sistemy, 3, Krasnoyarskii gos. agrar. un-t., Krasnoyarsk, 2005, 59–61

[5] A. L. Mylnikov, “Nilpotentnost kommutanta konechnoi perekruchennoi gruppy”, Sib. matem. zh., 47:5 (2006), 1117–1127 | MR

[6] A. L. Mylnikov, “O stupeni razreshimosti konechnoi perekruchennoi gruppy”, Vestnik Krasnoyarskogo gos. un-ta, 2006, no. 1, 61–67

[7] D. Gorienstein, Finite groups, Harper and Row, New York, 1968 | MR

[8] D. V. Veprintsev, A. L. Mylnikov, “Involyutivnaya dekompozitsiya gruppy i skruchennye podmnozhestva s malym kolichestvom involyutsii” (to appear)