The quasivariety generated by a~torsion-free Abelian-by-finite group
Algebra i logika, Tome 46 (2007) no. 4, pp. 407-427.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $L_q(qG)$ be the quasivariety lattice contained in a quasivariety generated by a group $G$. It is proved that if $G$ is a finitely generated torsion-free group in $\mathcal A\mathcal B_{2^n}$ (i.e., $G$ is an extension of an Abelian group by a group of exponent $2^n$), which is a split extension of an Abelian group by a cyclic group, then the lattice $L_q(qG)$ is a finite chain.
Keywords: quasivariety, quasivariety lattice, metabelian group.
@article{AL_2007_46_4_a0,
     author = {A. I. Budkin},
     title = {The quasivariety generated by a~torsion-free {Abelian-by-finite} group},
     journal = {Algebra i logika},
     pages = {407--427},
     publisher = {mathdoc},
     volume = {46},
     number = {4},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2007_46_4_a0/}
}
TY  - JOUR
AU  - A. I. Budkin
TI  - The quasivariety generated by a~torsion-free Abelian-by-finite group
JO  - Algebra i logika
PY  - 2007
SP  - 407
EP  - 427
VL  - 46
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2007_46_4_a0/
LA  - ru
ID  - AL_2007_46_4_a0
ER  - 
%0 Journal Article
%A A. I. Budkin
%T The quasivariety generated by a~torsion-free Abelian-by-finite group
%J Algebra i logika
%D 2007
%P 407-427
%V 46
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2007_46_4_a0/
%G ru
%F AL_2007_46_4_a0
A. I. Budkin. The quasivariety generated by a~torsion-free Abelian-by-finite group. Algebra i logika, Tome 46 (2007) no. 4, pp. 407-427. http://geodesic.mathdoc.fr/item/AL_2007_46_4_a0/

[1] A. I. Budkin, “O nezavisimoi aksiomatiziruemosti kvazimnogoobrazii razreshimykh grupp”, Algebra i logika, 30:2 (1991), 125–153 | MR | Zbl

[2] A. I. Budkin, “O kvazimnogoobraziyakh, soderzhaschikh nilpotentnye gruppy bez krucheniya”, Algebra i logika, 40:6 (2001), 629–650 | MR | Zbl

[3] A. I. Budkin, “O reshetke kvazimnogoobrazii metabelevykh grupp bez krucheniya”, Algebra i logika, 42:2 (2003), 161–181 | MR | Zbl

[4] A. I. Budkin, “Kvazimnogoobrazie, porozhdennoe svobodnymi metabelevymi i 2-nilpotentnymi gruppami”, Algebra i logika, 44:4 (2005), 389–398 | MR | Zbl

[5] A. A. Vinogradov, “Kvazimnogoobraziya abelevykh grupp”, Algebra i logika, 4:6 (1965), 15–19 | MR | Zbl

[6] A. I. Budkin, “O reshetke kvazimnogoobrazii nilpotentnykh grupp”, Algebra i logika, 33:1 (1994), 25–36 | MR | Zbl

[7] A. N. Fedorov, “Kvazitozhdestva svobodnoi 2-nilpotentnoi gruppy”, Matem. zametki, 40:5 (1986), 590–597 | MR | Zbl

[8] A. I. Maltsev, Algebraicheskie sistemy, Nauka, M., 1970 | MR

[9] A. I. Budkin, Kvazimnogoobraziya grupp, Izd-vo Alt. un-ta, Barnaul, 2002

[10] A. I. Budkin, V. A. Gorbunov, “K teorii kvazimnogoobrazii algebraicheskikh sistem”, Algebra i logika, 14:2 (1975), 123–142 | MR | Zbl

[11] V. A. Gorbunov, Algebraicheskaya teoriya kvazimnogoobrazii, Sibirskaya shkola algebry i logiki, Nauch. kniga, Novosibirsk, 1999 | Zbl

[12] M. I. Kargapolov, Yu. I. Merzlyakov, Osnovy teorii grupp, Nauka, M., 1972 | MR | Zbl

[13] Kh. Neiman, Mnogoobraziya grupp, Mir, M., 1969 | MR

[14] M. Kholl, Teoriya grupp, IL, M., 1962