Characterization of $(p,1)$-stable theories
Algebra i logika, Tome 46 (2007) no. 3, pp. 346-359.

Voir la notice de l'article provenant de la source Math-Net.Ru

A complete description of $(p,1)$-stable theories is furnished in terms of definable interpretability in a theory for the language of unary predicates.
Keywords: $(p,1)$-stable theory, definable interpretability.
@article{AL_2007_46_3_a3,
     author = {M. A. Rusaleev},
     title = {Characterization of $(p,1)$-stable theories},
     journal = {Algebra i logika},
     pages = {346--359},
     publisher = {mathdoc},
     volume = {46},
     number = {3},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2007_46_3_a3/}
}
TY  - JOUR
AU  - M. A. Rusaleev
TI  - Characterization of $(p,1)$-stable theories
JO  - Algebra i logika
PY  - 2007
SP  - 346
EP  - 359
VL  - 46
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2007_46_3_a3/
LA  - ru
ID  - AL_2007_46_3_a3
ER  - 
%0 Journal Article
%A M. A. Rusaleev
%T Characterization of $(p,1)$-stable theories
%J Algebra i logika
%D 2007
%P 346-359
%V 46
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2007_46_3_a3/
%G ru
%F AL_2007_46_3_a3
M. A. Rusaleev. Characterization of $(p,1)$-stable theories. Algebra i logika, Tome 46 (2007) no. 3, pp. 346-359. http://geodesic.mathdoc.fr/item/AL_2007_46_3_a3/

[1] S. Shelah, “Stable theories”, Isr. J. Math., 7:3 (1969), 187–202 | DOI | MR | Zbl

[2] M. D. Morley, “Categoricity in power”, Trans. Am. Math. Soc., 114:2 (1965), 514–538 | DOI | MR | Zbl

[3] S. Shelah, Classification theory and the number of non-isomorphic models, Stud. Logic Found. Math., 92, North-Holland, Amsterdam a. o., 1978 | MR | Zbl

[4] E. A. Palyutin, “$E^*$-stabilnye teorii”, Algebra i logika, 42:2 (2003), 194–210 | MR | Zbl

[5] T. Nurmagambetov, B. Puaza, “O chisle elementarnykh par nad mnozhestvami”, Trudy frantsuzsko-kazakhstanskogo kollokviuma po teorii modelei, Alma-Ata, 1995, 73–82