Characterization of $(p,1)$-stable theories
Algebra i logika, Tome 46 (2007) no. 3, pp. 346-359
A complete description of $(p,1)$-stable theories is furnished in terms of definable interpretability in a theory for the language of unary predicates.
Keywords:
$(p,1)$-stable theory, definable interpretability.
@article{AL_2007_46_3_a3,
author = {M. A. Rusaleev},
title = {Characterization of $(p,1)$-stable theories},
journal = {Algebra i logika},
pages = {346--359},
year = {2007},
volume = {46},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/AL_2007_46_3_a3/}
}
M. A. Rusaleev. Characterization of $(p,1)$-stable theories. Algebra i logika, Tome 46 (2007) no. 3, pp. 346-359. http://geodesic.mathdoc.fr/item/AL_2007_46_3_a3/
[1] S. Shelah, “Stable theories”, Isr. J. Math., 7:3 (1969), 187–202 | DOI | MR | Zbl
[2] M. D. Morley, “Categoricity in power”, Trans. Am. Math. Soc., 114:2 (1965), 514–538 | DOI | MR | Zbl
[3] S. Shelah, Classification theory and the number of non-isomorphic models, Stud. Logic Found. Math., 92, North-Holland, Amsterdam a. o., 1978 | MR | Zbl
[4] E. A. Palyutin, “$E^*$-stabilnye teorii”, Algebra i logika, 42:2 (2003), 194–210 | MR | Zbl
[5] T. Nurmagambetov, B. Puaza, “O chisle elementarnykh par nad mnozhestvami”, Trudy frantsuzsko-kazakhstanskogo kollokviuma po teorii modelei, Alma-Ata, 1995, 73–82