Groups with elementary Abelian centralizers of involutions
Algebra i logika, Tome 46 (2007) no. 1, pp. 75-82

Voir la notice de l'article provenant de la source Math-Net.Ru

An involution $i$ of a group $G$ is said to be almost perfect in $G$ if any two involutions of $i^G$ the order of a product of which is infinite are conjugated via a suitable involution in $i^G$. We generalize a known result by Brauer, Suzuki, and Wall concerning the structure of finite groups with elementary Abelian centralizers of involutions to groups with almost perfect involutions.
Keywords: groups with almost perfect involutions.
@article{AL_2007_46_1_a4,
     author = {A. I. Sozutov and A. S. Kryukovskii},
     title = {Groups with elementary {Abelian} centralizers of involutions},
     journal = {Algebra i logika},
     pages = {75--82},
     publisher = {mathdoc},
     volume = {46},
     number = {1},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2007_46_1_a4/}
}
TY  - JOUR
AU  - A. I. Sozutov
AU  - A. S. Kryukovskii
TI  - Groups with elementary Abelian centralizers of involutions
JO  - Algebra i logika
PY  - 2007
SP  - 75
EP  - 82
VL  - 46
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2007_46_1_a4/
LA  - ru
ID  - AL_2007_46_1_a4
ER  - 
%0 Journal Article
%A A. I. Sozutov
%A A. S. Kryukovskii
%T Groups with elementary Abelian centralizers of involutions
%J Algebra i logika
%D 2007
%P 75-82
%V 46
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2007_46_1_a4/
%G ru
%F AL_2007_46_1_a4
A. I. Sozutov; A. S. Kryukovskii. Groups with elementary Abelian centralizers of involutions. Algebra i logika, Tome 46 (2007) no. 1, pp. 75-82. http://geodesic.mathdoc.fr/item/AL_2007_46_1_a4/