Asymptotic growth of averaged Dehn functions for nilpotent groups
Algebra i logika, Tome 46 (2007) no. 1, pp. 60-74.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that in any finite representation of any finitely generated nilpotent group of nilpotency class $l\geqslant1$, the averaged Dehn function $\sigma(n)$ is subasymptotic w.r.t. the function $n^{l+1}$. As a consequence it is stated that in every finite representation of a free nilpotent group of nilpotency class $l$ of finite rank $r\geqslant2$, the Dehn function $\sigma(n)$ is Gromov subasymptotic.
Keywords: nilpotent group, averaged Dehn function.
@article{AL_2007_46_1_a3,
     author = {V. A. Roman'kov},
     title = {Asymptotic growth of averaged {Dehn} functions for nilpotent groups},
     journal = {Algebra i logika},
     pages = {60--74},
     publisher = {mathdoc},
     volume = {46},
     number = {1},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2007_46_1_a3/}
}
TY  - JOUR
AU  - V. A. Roman'kov
TI  - Asymptotic growth of averaged Dehn functions for nilpotent groups
JO  - Algebra i logika
PY  - 2007
SP  - 60
EP  - 74
VL  - 46
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2007_46_1_a3/
LA  - ru
ID  - AL_2007_46_1_a3
ER  - 
%0 Journal Article
%A V. A. Roman'kov
%T Asymptotic growth of averaged Dehn functions for nilpotent groups
%J Algebra i logika
%D 2007
%P 60-74
%V 46
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2007_46_1_a3/
%G ru
%F AL_2007_46_1_a3
V. A. Roman'kov. Asymptotic growth of averaged Dehn functions for nilpotent groups. Algebra i logika, Tome 46 (2007) no. 1, pp. 60-74. http://geodesic.mathdoc.fr/item/AL_2007_46_1_a3/

[1] M. L. Gromov, Geometric group theory, vol. 2, Asymptotic invariants of infinite groups, London Math. Soc. Lect. Note Ser., 182, Cambridge Univ. Press, Cambridge, 1993 | MR | Zbl

[2] E. G. Kukina, V. A. Romankov, “Subkvadratichnost usrednënnoi funktsii Dena dlya svobodnykh abelevykh grupp”, Sib. matem. zh., 44:4 (2003), 772–778 | MR | Zbl

[3] V. A. Romankov, “Subkubichnost usrednënnoi funktsii Dena nilpotentnoi gruppy stupeni 2”, Sib. matem. zh., 46:3 (2005), 663–672 | MR

[4] D. B. A. Epstein, J. W. Cannon, D. F. Holt, S. V. F. Levy, M. S. Paterson, W. P. Thurston, Word processing in groups, Jones and Barlett Publ., Boston, MA etc., 1992 | MR | Zbl

[5] R. Young, Averaged Dehn functions for nilpotent groups, arXiv: math.GR/0510665v3,2005 | MR

[6] G. Baumslag, C. F. Miller, H. Short, “Isoperimetric inequalities and the homology of groups”, Invent. Math., 113:3 (1993), 531–560 | DOI | MR | Zbl

[7] Zh. T. Belenkova, “O chisle kombinatornykh zamknutykh putei na ploskosti”, Vestnik Omsk. un-ta, 30 (2003), 13–14

[8] S. M. Gersten, D. F. Holt, T. R. Riley, “Isoperimetric inequalities for nilpotent groups”, Geom. Funct. Anal., 13:4 (2003), 795–814 | DOI | MR | Zbl