Asymptotic growth of averaged Dehn functions for nilpotent groups
Algebra i logika, Tome 46 (2007) no. 1, pp. 60-74
Voir la notice de l'article provenant de la source Math-Net.Ru
It is proved that in any finite representation of any finitely generated nilpotent group of nilpotency class $l\geqslant1$, the averaged Dehn function $\sigma(n)$ is subasymptotic w.r.t. the function $n^{l+1}$. As a consequence it is stated that in every finite representation of a free nilpotent group of nilpotency class $l$ of finite rank $r\geqslant2$, the Dehn function $\sigma(n)$ is Gromov subasymptotic.
Keywords:
nilpotent group, averaged Dehn function.
@article{AL_2007_46_1_a3,
author = {V. A. Roman'kov},
title = {Asymptotic growth of averaged {Dehn} functions for nilpotent groups},
journal = {Algebra i logika},
pages = {60--74},
publisher = {mathdoc},
volume = {46},
number = {1},
year = {2007},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/AL_2007_46_1_a3/}
}
V. A. Roman'kov. Asymptotic growth of averaged Dehn functions for nilpotent groups. Algebra i logika, Tome 46 (2007) no. 1, pp. 60-74. http://geodesic.mathdoc.fr/item/AL_2007_46_1_a3/