Subfamilies of special elements of complete numberings
Algebra i logika, Tome 45 (2006) no. 6, pp. 758-764
Cet article a éte moissonné depuis la source Math-Net.Ru
Any subfamily of a given at most countable non-empty family can be converted into a set of all special elements of a suitable numbering.
Keywords:
numbering, complete numbering, completion, special element, $\Sigma_{n}^0$-computable numbering.
@article{AL_2006_45_6_a5,
author = {Z. G. Khisamiev},
title = {Subfamilies of special elements of complete numberings},
journal = {Algebra i logika},
pages = {758--764},
year = {2006},
volume = {45},
number = {6},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/AL_2006_45_6_a5/}
}
Z. G. Khisamiev. Subfamilies of special elements of complete numberings. Algebra i logika, Tome 45 (2006) no. 6, pp. 758-764. http://geodesic.mathdoc.fr/item/AL_2006_45_6_a5/
[1] Yu. L. Ershov, Teoriya numeratsii, Nauka, M., 1977 | MR
[2] S. A. Badaev, S. S. Goncharov, A. Sorbi, “Completeness and universality of arithmetical numberings”, Computability and models, ed. S. B. Cooper, S. S. Goncharov, Kluwer Academic/Plenum Publishers, New York, 2003, 11–44 | MR
[3] Yu. L. Ershov, “Ob odnoi ierarkhii mnozhestv II”, Algebra i logika, 7:1 (1968), 15–47 | MR | Zbl
[4] S. D. Denisov, I. A. Lavrov, “Polnye numeratsii s beskonechnym chislom osobykh elementov”, Algebra i logika, 9:5 (1970), 503–509 | MR | Zbl