Subfamilies of special elements of complete numberings
Algebra i logika, Tome 45 (2006) no. 6, pp. 758-764.

Voir la notice de l'article provenant de la source Math-Net.Ru

Any subfamily of a given at most countable non-empty family can be converted into a set of all special elements of a suitable numbering.
Keywords: numbering, complete numbering, completion, special element, $\Sigma_{n}^0$-computable numbering.
@article{AL_2006_45_6_a5,
     author = {Z. G. Khisamiev},
     title = {Subfamilies of special elements of complete numberings},
     journal = {Algebra i logika},
     pages = {758--764},
     publisher = {mathdoc},
     volume = {45},
     number = {6},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2006_45_6_a5/}
}
TY  - JOUR
AU  - Z. G. Khisamiev
TI  - Subfamilies of special elements of complete numberings
JO  - Algebra i logika
PY  - 2006
SP  - 758
EP  - 764
VL  - 45
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2006_45_6_a5/
LA  - ru
ID  - AL_2006_45_6_a5
ER  - 
%0 Journal Article
%A Z. G. Khisamiev
%T Subfamilies of special elements of complete numberings
%J Algebra i logika
%D 2006
%P 758-764
%V 45
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2006_45_6_a5/
%G ru
%F AL_2006_45_6_a5
Z. G. Khisamiev. Subfamilies of special elements of complete numberings. Algebra i logika, Tome 45 (2006) no. 6, pp. 758-764. http://geodesic.mathdoc.fr/item/AL_2006_45_6_a5/

[1] Yu. L. Ershov, Teoriya numeratsii, Nauka, M., 1977 | MR

[2] S. A. Badaev, S. S. Goncharov, A. Sorbi, “Completeness and universality of arithmetical numberings”, Computability and models, ed. S. B. Cooper, S. S. Goncharov, Kluwer Academic/Plenum Publishers, New York, 2003, 11–44 | MR

[3] Yu. L. Ershov, “Ob odnoi ierarkhii mnozhestv II”, Algebra i logika, 7:1 (1968), 15–47 | MR | Zbl

[4] S. D. Denisov, I. A. Lavrov, “Polnye numeratsii s beskonechnym chislom osobykh elementov”, Algebra i logika, 9:5 (1970), 503–509 | MR | Zbl