Fuzzy logics with modalities
Algebra i logika, Tome 45 (2006) no. 6, pp. 731-757.

Voir la notice de l'article provenant de la source Math-Net.Ru

We explore the basic fuzzy logic $BL$ as well as propositional fuzzy logics with modalities $\Box$ and $\diamond$ and a total accessibility relation. Formulations and proofs are given to replacement theorems for $BL$. A basic calculus of modal fuzzy logic is introduced. For this calculus and its extensions, we prove replacement and deduction theorems.
Keywords: basic fuzzy logic, $BL$-algebra, modality, Kripke $L$-structure, schematic extension, replacement theorem, deduction theorem.
Mots-clés : calculus
@article{AL_2006_45_6_a4,
     author = {O. V. Zeeval'd},
     title = {Fuzzy logics with modalities},
     journal = {Algebra i logika},
     pages = {731--757},
     publisher = {mathdoc},
     volume = {45},
     number = {6},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2006_45_6_a4/}
}
TY  - JOUR
AU  - O. V. Zeeval'd
TI  - Fuzzy logics with modalities
JO  - Algebra i logika
PY  - 2006
SP  - 731
EP  - 757
VL  - 45
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2006_45_6_a4/
LA  - ru
ID  - AL_2006_45_6_a4
ER  - 
%0 Journal Article
%A O. V. Zeeval'd
%T Fuzzy logics with modalities
%J Algebra i logika
%D 2006
%P 731-757
%V 45
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2006_45_6_a4/
%G ru
%F AL_2006_45_6_a4
O. V. Zeeval'd. Fuzzy logics with modalities. Algebra i logika, Tome 45 (2006) no. 6, pp. 731-757. http://geodesic.mathdoc.fr/item/AL_2006_45_6_a4/

[1] P. Hajek, Metamathematics of fuzzy logic, Kluwer Academic Rubl., Dordrecht, 1998 | MR | Zbl

[2] M. Baaz, H. Veith, “Quantifier elimination in fuzzy logic”, 12th international workshop, CSL'98, annual conference of the EACSL, Brno, Czech Republic, August 24-28, 1998. Proceedings., Lect. Notes Comput. Sci., 1584, eds. G. Gottlob et al. \indjjr Computer science logic., Springer-Verlag, Berlin, 1999, 399–414 | MR | Zbl

[3] M. Baaz, H. Veith, “Interpolation in fuzzy logic”, Arch. Math. Logic, 38:7 (1999), 461–489 | DOI | MR | Zbl

[4] O. V. Zeevald, “Nechetkie logiki i $\omega^+$-znachnaya logika”, Vestnik NGU, ser.: matem., mekh., inform., 4:3/4 (2004), 33–44