Fuzzy logics with modalities
Algebra i logika, Tome 45 (2006) no. 6, pp. 731-757
Cet article a éte moissonné depuis la source Math-Net.Ru
We explore the basic fuzzy logic $BL$ as well as propositional fuzzy logics with modalities $\Box$ and $\diamond$ and a total accessibility relation. Formulations and proofs are given to replacement theorems for $BL$. A basic calculus of modal fuzzy logic is introduced. For this calculus and its extensions, we prove replacement and deduction theorems.
Keywords:
basic fuzzy logic, $BL$-algebra, modality, Kripke $L$-structure, schematic extension, replacement theorem, deduction theorem.
Mots-clés : calculus
Mots-clés : calculus
@article{AL_2006_45_6_a4,
author = {O. V. Zeeval'd},
title = {Fuzzy logics with modalities},
journal = {Algebra i logika},
pages = {731--757},
year = {2006},
volume = {45},
number = {6},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/AL_2006_45_6_a4/}
}
O. V. Zeeval'd. Fuzzy logics with modalities. Algebra i logika, Tome 45 (2006) no. 6, pp. 731-757. http://geodesic.mathdoc.fr/item/AL_2006_45_6_a4/
[1] P. Hajek, Metamathematics of fuzzy logic, Kluwer Academic Rubl., Dordrecht, 1998 | MR | Zbl
[2] M. Baaz, H. Veith, “Quantifier elimination in fuzzy logic”, 12th international workshop, CSL'98, annual conference of the EACSL, Brno, Czech Republic, August 24-28, 1998. Proceedings., Lect. Notes Comput. Sci., 1584, eds. G. Gottlob et al. \indjjr Computer science logic., Springer-Verlag, Berlin, 1999, 399–414 | MR | Zbl
[3] M. Baaz, H. Veith, “Interpolation in fuzzy logic”, Arch. Math. Logic, 38:7 (1999), 461–489 | DOI | MR | Zbl
[4] O. V. Zeevald, “Nechetkie logiki i $\omega^+$-znachnaya logika”, Vestnik NGU, ser.: matem., mekh., inform., 4:3/4 (2004), 33–44