Lattices of subgroup and subsystem functors
Algebra i logika, Tome 45 (2006) no. 6, pp. 710-730.

Voir la notice de l'article provenant de la source Math-Net.Ru

Lattices of subgroup and subsystem functors are investigated. In particular, it is proved that for the case where ${\mathcal X}$ is a formation of finite groups and width of the lattice $F_0({\mathcal X})$ is at most $|\pi ({\mathcal X})|$, the formation ${\mathcal X}$ is metanilpotent and $|\pi({\mathcal X})| \leqslant 3$.
Keywords: subsystem functor, subgroup functor, lattice of subsystem functors, lattice of subgroup functors.
@article{AL_2006_45_6_a3,
     author = {W. Guo and A. N. Skiba and K. P. Sham},
     title = {Lattices of subgroup and subsystem functors},
     journal = {Algebra i logika},
     pages = {710--730},
     publisher = {mathdoc},
     volume = {45},
     number = {6},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2006_45_6_a3/}
}
TY  - JOUR
AU  - W. Guo
AU  - A. N. Skiba
AU  - K. P. Sham
TI  - Lattices of subgroup and subsystem functors
JO  - Algebra i logika
PY  - 2006
SP  - 710
EP  - 730
VL  - 45
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2006_45_6_a3/
LA  - ru
ID  - AL_2006_45_6_a3
ER  - 
%0 Journal Article
%A W. Guo
%A A. N. Skiba
%A K. P. Sham
%T Lattices of subgroup and subsystem functors
%J Algebra i logika
%D 2006
%P 710-730
%V 45
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2006_45_6_a3/
%G ru
%F AL_2006_45_6_a3
W. Guo; A. N. Skiba; K. P. Sham. Lattices of subgroup and subsystem functors. Algebra i logika, Tome 45 (2006) no. 6, pp. 710-730. http://geodesic.mathdoc.fr/item/AL_2006_45_6_a3/

[1] A. N. Skiba, Algebra formatsii, Belarus. navuka, Minsk, 1997 | MR | Zbl

[2] M. V. Selkin, Maksimalnye podgruppy v teorii klassov konechnykh grupp, Belarus. navuka, Minsk, 1997 | MR

[3] S. F. Kamornikov, M. V. Selkin, Podgruppovye funktory i klassy konechnykh grupp, Belarus. navuka, Minsk, 2001

[4] A. N. Skiba, Reshetki i universalnye algebry, izd-vo GGU im. F. Skoriny, Gomel, 2002

[5] A. N. Skiba, “O reshetke podgruppovykh funktorov”, Vopr. algebry (Gomel), 10 (1996), 130–134

[6] F. Al-Dababsekh, “O porozhdennykh $\tau$-zamknutykh poluformatsiyakh i formatsiyakh $n$-arnykh grupp”, Vopr. algebry (Gomel), 15:1 (1999), 104–111

[7] F. Al-Dababsekh, A. N. Skiba, “Dva zamechaniya o $\tau$-zamknutykh formatsiyakh konechnykh $n$-arnykh grupp”, Vopr. algebry (Gomel), 15:1 (1999), 138–140

[8] V. M. Selkin, “O minimalnykh $\tau$-zamknutykh $n$-lokalnykh nenilpotentnykh formatsiyakh”, Vopr. algebry (Gomel), 16:3 (2000), 48–51

[9] M. I. Efremova, “O $\tau$-klassakh Shunka $n$-arnykh grupp”, Vopr. algebry (Gomel), 17 (2001), 138–140

[10] M. V. Selkin, A. N. Skiba, “O reshetke $\tau$-klassov Shunka”, Dokl. NAN Belarusii, 45:3 (2001), 61–63 | MR

[11] W. Guo, K. P. Shum, “Formation operators on classes of algebras”, Comm. Algebra, 30:7 (2002), 3457–3472 | DOI | MR | Zbl

[12] L. A. Vorobei, “O svoistvakh reshetki tranzitivnykh regulyarnykh podgruppovykh funktorov”, Vestsi NAN Belarusi, 2003, no. 2, 22–24 | MR

[13] A. I. Maltsev, Algebraicheskie sistemy, Nauka, M., 1967

[14] L. A. Shemetkov, A. N. Skiba, Formatsii algebraicheskikh sistem, Nauka, M., 1989 | MR

[15] L. A. Shemetkov, Formatsii konechnykh grupp, Nauka, M., 1978 | MR | Zbl

[16] A. M. Galmak, Kongruentsii poliadicheskikh grupp, Belarus. navuka, Minsk, 1999

[17] K. Doerk, T. Hawkes, Finite Soluble Groups, Walter de Gruyter, Berlin–New York, 1992 | MR

[18] D. W. Barnes, H. Gastineau-Hills, “On the theory of soluble Lie algebras”, Math. Z., 106:4 (1969), 343–354 | MR

[19] G. Grettser, Obschaya teoriya reshetok, Mir, M., 1982 | MR

[20] Nereshennye voprosy teorii grupp, , In-t matem. SO RAN, Novosibirsk, 2006 http://www.math.nsc.ru/\sim alglog

[21] P. Neumann, “A note on formations of .nite nilpotent groups”, Bull. London Math. Soc., 2:1 (1970), 91 | DOI | MR | Zbl