Elementary properties of categories of acts over monoids
Algebra i logika, Tome 45 (2006) no. 6, pp. 687-709.

Voir la notice de l'article provenant de la source Math-Net.Ru

We explore connections between elementary equivalence of categories of acts over monoids and second-order equivalence of monoids.
Keywords: elementary equivalence, second-order theories, category of acts over monoids.
@article{AL_2006_45_6_a2,
     author = {E. I. Bunina and A. V. Mikhalev},
     title = {Elementary properties of categories of acts over monoids},
     journal = {Algebra i logika},
     pages = {687--709},
     publisher = {mathdoc},
     volume = {45},
     number = {6},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2006_45_6_a2/}
}
TY  - JOUR
AU  - E. I. Bunina
AU  - A. V. Mikhalev
TI  - Elementary properties of categories of acts over monoids
JO  - Algebra i logika
PY  - 2006
SP  - 687
EP  - 709
VL  - 45
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2006_45_6_a2/
LA  - ru
ID  - AL_2006_45_6_a2
ER  - 
%0 Journal Article
%A E. I. Bunina
%A A. V. Mikhalev
%T Elementary properties of categories of acts over monoids
%J Algebra i logika
%D 2006
%P 687-709
%V 45
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2006_45_6_a2/
%G ru
%F AL_2006_45_6_a2
E. I. Bunina; A. V. Mikhalev. Elementary properties of categories of acts over monoids. Algebra i logika, Tome 45 (2006) no. 6, pp. 687-709. http://geodesic.mathdoc.fr/item/AL_2006_45_6_a2/

[1] A. I. Maltsev, “Ob elementarnykh svoistvakh lineinykh grupp”, sb. “Problemy matematiki i mekhaniki”, Novosibirsk, 1961, 110–132

[2] G. Keisler, Ch. Ch. Chen, Teoriya modelei, Mir, M., 1977 | MR

[3] C. I. Beidar, A. V. Mikhalev, “On Malcev's theorem on elementary equivalence of linear groups”, Contemp. Math., 131 (1992), 29–35 | MR | Zbl

[4] E. I. Bunina, “Elementarnaya ekvivalentnost unitarnykh lineinykh grupp nad koltsami i telami”, Uspekhi matem. nauk, 53:2 (1998), 137–138 | MR | Zbl

[5] E. I. Bunina, “Elementarnaya ekvivalentnost grupp Shevalle”, Uspekhi matem. nauk, 56:1 (2001), 157–158 | MR | Zbl

[6] E. I. Bunina, “Gruppy Shevalle nad polyami i ikh elementarnye svoistva”, Uspekhi matem. nauk, 59:5 (2004), 952–953 | MR | Zbl

[7] V. Tolstykh, “Elementary equivalence of infinite-dimensional classical groups”, Ann. Pure Appl. Logic, 105 (2000), 103–156 | DOI | MR | Zbl

[8] E. I. Bunina, A. V. Mikhalev, “Elementarnaya ekvivalentnost kategorii modulei nad koltsami, kolets endomorfizmov i grupp avtomorfizmov modulei”, Fund. prikl. matem., 10:2 (2004), 51–134 | MR | Zbl

[9] E. I. Bunina, A. V. Mikhalev, “Elementarnaya ekvivalentnost kolets endomorfizmov abelevykh $p$-grupp”, Fund. prikl. matem., 10:2 (2004), 135–224 | MR | Zbl

[10] M. Kilp, U. Knauer, A. V. Mikhalev, Monoids, Acts and Categories, Walter de Gruyter, Berlin–New York, 2000 | MR