Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AL_2006_45_6_a0, author = {S. A. Badaev and S. S. Goncharov and A. Sorbi}, title = {Isomorphism types of {Rogers} semilattices for families from different levels of the arithmetical hierarchy}, journal = {Algebra i logika}, pages = {637--654}, publisher = {mathdoc}, volume = {45}, number = {6}, year = {2006}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/AL_2006_45_6_a0/} }
TY - JOUR AU - S. A. Badaev AU - S. S. Goncharov AU - A. Sorbi TI - Isomorphism types of Rogers semilattices for families from different levels of the arithmetical hierarchy JO - Algebra i logika PY - 2006 SP - 637 EP - 654 VL - 45 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/AL_2006_45_6_a0/ LA - ru ID - AL_2006_45_6_a0 ER -
%0 Journal Article %A S. A. Badaev %A S. S. Goncharov %A A. Sorbi %T Isomorphism types of Rogers semilattices for families from different levels of the arithmetical hierarchy %J Algebra i logika %D 2006 %P 637-654 %V 45 %N 6 %I mathdoc %U http://geodesic.mathdoc.fr/item/AL_2006_45_6_a0/ %G ru %F AL_2006_45_6_a0
S. A. Badaev; S. S. Goncharov; A. Sorbi. Isomorphism types of Rogers semilattices for families from different levels of the arithmetical hierarchy. Algebra i logika, Tome 45 (2006) no. 6, pp. 637-654. http://geodesic.mathdoc.fr/item/AL_2006_45_6_a0/
[1] C. C. Goncharov, A. Sorbi, “Obobschenno vychislimye numeratsii i netrivialnye polureshetki Rodzhersa”, Algebra i logika, 36:6 (1997), 621–641 | MR | Zbl
[2] S. A. Badaev, S. S. Goncharov, A. Sorbi, “Isomorphism types and theories of Rogers semilattices of arithmetical nuberings”, Computability and models, ed. S. B. Cooper, S. S. Goncharov, Kluwer Academic/Plenum Publishers, New York, 2003, 79–91 | MR
[3] S. Badaev, S. Goncharov, A. Sorbi, “Elementary properties of Rogers semilattices of arithmetical numberings”, Proc. 7-th and 8-th Asian Logic Conf., ed. R. Downey, D. Ding, S. H. Tung, Y. H. Qiu, M. Yasugi, World Sci., Singapore, 2003, 1–10 | MR | Zbl
[4] C. A. Badaev, C. C. Goncharov, A. Sorbi, “Ob elementarnykh teoriyakh polureshetok Rodzhersa”, Algebra i logika, 44:3 (2005), 261–268 | MR | Zbl
[5] A. I. Maltsev, Algoritmy i rekursivnye funktsii, Nauka, M., 1965 | MR
[6] X. Rodzhers, Teoriya rekursivnykh funktsii i effektivnaya vychislimost, Mir, M., 1972 | MR
[7] P. I. Soar, Vychislimo perechislimye mnozhestva i stepeni, Kazanskoe matem. ob-vo, Kazan, 2000 | MR | Zbl
[8] Yu. L. Ershov, Teoriya numeratsii, Nauka, M., 1977 | MR
[9] S. S. Goncharov, Schetnye bulevy algebry i razreshimost, Sibirskaya shkola algebry i logiki, Nauchnaya kniga (NII MIOO NGU), Novosibirsk, 1996 | MR
[10] S. A. Badaev, S. S. Goncharov, A. Sorbi, “Completeness and universality of arithmetical numberings”, Computability and models, ed. S. B. Cooper, S. S. Goncharov, Kluwer Academic/Plenum Publishers, New York, 2003, 11–44 | MR
[11] S. A. Badaev, S. S. Goncharov, S. Yu. Podzorov, A. Sorbi, “Algebraic properties of Rogers semilattices of arithmetical numberings”, Computability and models, ed. S. B. Cooper, S. S. Goncharov, Kluwer Academic/Plenum Publishers, New York, 2003, 45–77 | MR
[12] B. D. Dzgoev, “Konstruktivizatsii bulevykh reshetok”, Algebra i logika, 27:6 (1988), 641–648 | MR
[13] L. Feiner, “Hierarchies of Boolean algebras”, J. Symb. Log., 35:3 (1970), 365–374 | DOI | MR
[14] A. H. Lachlan, “On the lattice of recursively enumerable sets”, Trans. Am. Math. Soc., 130:1 (1968), 1–37 | DOI | MR | Zbl