Isomorphism types of Rogers semilattices for families from different levels of the arithmetical hierarchy
Algebra i logika, Tome 45 (2006) no. 6, pp. 637-654.

Voir la notice de l'article provenant de la source Math-Net.Ru

We investigate differences in isomorphism types for Rogers semilattices of computable numberings of families of sets lying in different levels of the arithmetical hierarchy.
Keywords: arithmetical hierarchy, computable numbering, Rogers semilattice.
@article{AL_2006_45_6_a0,
     author = {S. A. Badaev and S. S. Goncharov and A. Sorbi},
     title = {Isomorphism types of {Rogers} semilattices for families from different levels of the arithmetical hierarchy},
     journal = {Algebra i logika},
     pages = {637--654},
     publisher = {mathdoc},
     volume = {45},
     number = {6},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2006_45_6_a0/}
}
TY  - JOUR
AU  - S. A. Badaev
AU  - S. S. Goncharov
AU  - A. Sorbi
TI  - Isomorphism types of Rogers semilattices for families from different levels of the arithmetical hierarchy
JO  - Algebra i logika
PY  - 2006
SP  - 637
EP  - 654
VL  - 45
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2006_45_6_a0/
LA  - ru
ID  - AL_2006_45_6_a0
ER  - 
%0 Journal Article
%A S. A. Badaev
%A S. S. Goncharov
%A A. Sorbi
%T Isomorphism types of Rogers semilattices for families from different levels of the arithmetical hierarchy
%J Algebra i logika
%D 2006
%P 637-654
%V 45
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2006_45_6_a0/
%G ru
%F AL_2006_45_6_a0
S. A. Badaev; S. S. Goncharov; A. Sorbi. Isomorphism types of Rogers semilattices for families from different levels of the arithmetical hierarchy. Algebra i logika, Tome 45 (2006) no. 6, pp. 637-654. http://geodesic.mathdoc.fr/item/AL_2006_45_6_a0/

[1] C. C. Goncharov, A. Sorbi, “Obobschenno vychislimye numeratsii i netrivialnye polureshetki Rodzhersa”, Algebra i logika, 36:6 (1997), 621–641 | MR | Zbl

[2] S. A. Badaev, S. S. Goncharov, A. Sorbi, “Isomorphism types and theories of Rogers semilattices of arithmetical nuberings”, Computability and models, ed. S. B. Cooper, S. S. Goncharov, Kluwer Academic/Plenum Publishers, New York, 2003, 79–91 | MR

[3] S. Badaev, S. Goncharov, A. Sorbi, “Elementary properties of Rogers semilattices of arithmetical numberings”, Proc. 7-th and 8-th Asian Logic Conf., ed. R. Downey, D. Ding, S. H. Tung, Y. H. Qiu, M. Yasugi, World Sci., Singapore, 2003, 1–10 | MR | Zbl

[4] C. A. Badaev, C. C. Goncharov, A. Sorbi, “Ob elementarnykh teoriyakh polureshetok Rodzhersa”, Algebra i logika, 44:3 (2005), 261–268 | MR | Zbl

[5] A. I. Maltsev, Algoritmy i rekursivnye funktsii, Nauka, M., 1965 | MR

[6] X. Rodzhers, Teoriya rekursivnykh funktsii i effektivnaya vychislimost, Mir, M., 1972 | MR

[7] P. I. Soar, Vychislimo perechislimye mnozhestva i stepeni, Kazanskoe matem. ob-vo, Kazan, 2000 | MR | Zbl

[8] Yu. L. Ershov, Teoriya numeratsii, Nauka, M., 1977 | MR

[9] S. S. Goncharov, Schetnye bulevy algebry i razreshimost, Sibirskaya shkola algebry i logiki, Nauchnaya kniga (NII MIOO NGU), Novosibirsk, 1996 | MR

[10] S. A. Badaev, S. S. Goncharov, A. Sorbi, “Completeness and universality of arithmetical numberings”, Computability and models, ed. S. B. Cooper, S. S. Goncharov, Kluwer Academic/Plenum Publishers, New York, 2003, 11–44 | MR

[11] S. A. Badaev, S. S. Goncharov, S. Yu. Podzorov, A. Sorbi, “Algebraic properties of Rogers semilattices of arithmetical numberings”, Computability and models, ed. S. B. Cooper, S. S. Goncharov, Kluwer Academic/Plenum Publishers, New York, 2003, 45–77 | MR

[12] B. D. Dzgoev, “Konstruktivizatsii bulevykh reshetok”, Algebra i logika, 27:6 (1988), 641–648 | MR

[13] L. Feiner, “Hierarchies of Boolean algebras”, J. Symb. Log., 35:3 (1970), 365–374 | DOI | MR

[14] A. H. Lachlan, “On the lattice of recursively enumerable sets”, Trans. Am. Math. Soc., 130:1 (1968), 1–37 | DOI | MR | Zbl