Distributivity Conditions for Lattices of Dominions in Quasivarieties of Abelian Groups
Algebra i logika, Tome 45 (2006) no. 4, pp. 484-499.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\mathcal{M}$ be any quasivariety of Abelian groups, $L_{q}(\mathcal{M})$ be a subquasivariety lattice of $\mathcal{M}$, ${\rm dom}^{\mathcal{M}}_{G}(H)$ be the dominion of a subgroup $H$ of a group $G$ in $\mathcal{M}$, and $G/{\rm dom}^{\mathcal{M}}_{G}(H)$ be a finitely generated group. It is known that the set $L(G,H,\mathcal{M})=\{{\rm dom}^{\mathcal{N}}_{G}(H)\mid \mathcal{N}\in L_{q}(\mathcal{M})\}$ forms a lattice w.r.t. set-theoretic inclusion. We look at the structure of ${\rm dom}^{\mathcal{M}}_{G}(H)$. It is proved that the lattice $L(G,H,\mathcal{M})$ is semidistributive and necessary and sufficient conditions are specified for its being distributive.
Mots-clés : group
Keywords: dominion, quasivariety, lattice.
@article{AL_2006_45_4_a6,
     author = {S. A. Shakhova},
     title = {Distributivity {Conditions} for {Lattices} of {Dominions} in {Quasivarieties} of {Abelian} {Groups}},
     journal = {Algebra i logika},
     pages = {484--499},
     publisher = {mathdoc},
     volume = {45},
     number = {4},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2006_45_4_a6/}
}
TY  - JOUR
AU  - S. A. Shakhova
TI  - Distributivity Conditions for Lattices of Dominions in Quasivarieties of Abelian Groups
JO  - Algebra i logika
PY  - 2006
SP  - 484
EP  - 499
VL  - 45
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2006_45_4_a6/
LA  - ru
ID  - AL_2006_45_4_a6
ER  - 
%0 Journal Article
%A S. A. Shakhova
%T Distributivity Conditions for Lattices of Dominions in Quasivarieties of Abelian Groups
%J Algebra i logika
%D 2006
%P 484-499
%V 45
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2006_45_4_a6/
%G ru
%F AL_2006_45_4_a6
S. A. Shakhova. Distributivity Conditions for Lattices of Dominions in Quasivarieties of Abelian Groups. Algebra i logika, Tome 45 (2006) no. 4, pp. 484-499. http://geodesic.mathdoc.fr/item/AL_2006_45_4_a6/

[1] J. R. Isbell, “Epimorphisms and dominions”, Proc. Conf. Categor. Algebra, La Jolla 1965, Springer-Verlag, New York, 1966, 232–246 | MR

[2] P. V. Higgins, “Epimorphisms and amalgams”, Colloq. Math., 56:1 (1988), 1–17 | MR | Zbl

[3] A. Magidin, “Dominions in varieties of nilpotent groups”, Commun. Algebra, 28:3 (2000), 1241–1270 | DOI | MR | Zbl

[4] D. Wasserman, Epimorphisms and dominions in varieties of lattices, Ph. D. thesis, Univ. California, Berkeley, 2001

[5] G. Bergman, “Ordering coproducts of groups and semigroups”, J. Algebra, 133:2 (1990), 313–339 | DOI | MR | Zbl

[6] A. Budkin, “Dominions in quasivarieties of universal algebras”, Stud. Log., 78:1-2 (2004), 120–127 | DOI | MR

[7] C. A. Shakhova, “O reshetkakh dominionov v kvazimnogoobraziyakh abelevykh grupp”, Algebra i logika, 44:2 (2005), 238–251 | MR | Zbl

[8] A. A. Vinogradov, “Kvazimnogoobraziya abelevykh grupp”, Algebra i logika, 4:6 (1965), 15–19 | MR | Zbl

[9] A. I. Budkin, Kvazimnogoobraziya grupp, Altaiskii gos. un-t, Barnaul, 2002

[10] V. A. Gorbunov, Algebraicheskaya teoriya kvazimnogoobrazii, Sib. shkola algebry i logiki, Nauch. kniga (IDMI), Novosibirsk, 1999 | Zbl

[11] G. Birkgof, Teoriya reshetok, Nauka, M., 1984 | MR

[12] A. I. Maltsev, Algebraicheskie sistemy, Nauka, M., 1970 | MR