Transfer Theorems for Extensions of the Paraconsistent Nelson Logic
Algebra i logika, Tome 45 (2006) no. 4, pp. 409-435.

Voir la notice de l'article provenant de la source Math-Net.Ru

Descriptions of tabular logics, pretabular logics, and logics satisfying Craig's interpolation property are transferred from the class of superintuitionistic logics to the class of extensions of the paraconsistent Nelson logic.
Keywords: Craig's interpolation property, paraconsistent Nelson logic, pretabular logic, tabular logic.
@article{AL_2006_45_4_a2,
     author = {S. P. Odintsov},
     title = {Transfer {Theorems} for {Extensions} of the {Paraconsistent} {Nelson} {Logic}},
     journal = {Algebra i logika},
     pages = {409--435},
     publisher = {mathdoc},
     volume = {45},
     number = {4},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2006_45_4_a2/}
}
TY  - JOUR
AU  - S. P. Odintsov
TI  - Transfer Theorems for Extensions of the Paraconsistent Nelson Logic
JO  - Algebra i logika
PY  - 2006
SP  - 409
EP  - 435
VL  - 45
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2006_45_4_a2/
LA  - ru
ID  - AL_2006_45_4_a2
ER  - 
%0 Journal Article
%A S. P. Odintsov
%T Transfer Theorems for Extensions of the Paraconsistent Nelson Logic
%J Algebra i logika
%D 2006
%P 409-435
%V 45
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2006_45_4_a2/
%G ru
%F AL_2006_45_4_a2
S. P. Odintsov. Transfer Theorems for Extensions of the Paraconsistent Nelson Logic. Algebra i logika, Tome 45 (2006) no. 4, pp. 409-435. http://geodesic.mathdoc.fr/item/AL_2006_45_4_a2/

[1] D. Nelson, “Constructible falsity”, J. Symb. Log., 14 (1949), 16–26 | DOI | MR | Zbl

[2] R. Thomason, “A semantical study of constructive falsity”, Z. Math. Logik Grundl. Math., 15 (1969), 247–257 | DOI | MR | Zbl

[3] R. Routley, “Semantical analyses of propositional systems of Fitch and Nelson”, Stud. Log., 33 (1974), 283–298 | DOI | MR | Zbl

[4] H. Rasiowa, “$N$-lattices and constructive logic with strong negation”, Fundam. Math., 46 (1958), 61–80 | MR | Zbl

[5] D. Vakarelov, “Notes on $N$-lattices and constructive logic with strong negation”, Stud. Log., 36 (1977), 109–125 | DOI | MR | Zbl

[6] M. M. Fidel, “An algebraic study of a propositional system of Nelson”, Mathematical Logic, Proc. (First Brasilian Conf., Campinas 1977), Lect. Notes Pure Appl. Math., 39, North-Holland, Amsterdam, 1978, 99–117 | MR

[7] V. Goranko, “The Craig interpolation theorem for propositional logics with strong negation”, Stud. Log., 44 (1985), 291–317 | DOI | MR | Zbl

[8] A. Sendlewski, “Some investigations of varieties of $N$-lattices”, Stud. Log., 43 (1984), 257–280 | DOI | MR | Zbl

[9] A. Sendlewski, “Nelson algebras through Heyting ones”, Stud. Log., 49:1 (1990), 105–126 | DOI | MR | Zbl

[10] A. Sendlewski, “Axiomatic extensions of the constructive logic with strong negation and disjunction property”, Stud. Log., 55:3 (1995), 377–388 | DOI | MR | Zbl

[11] M. Kracht, “On extensions of intermediate logics by strong negation”, J. Philos. Log., 27:1 (1998), 49–73 | DOI | MR | Zbl

[12] A. Almukdad, D. Nelson, “Constructible falsity and inexact predicates”, J. Symb. Log., 49 (1984), 231–233 | DOI | MR | Zbl

[13] J. Jaspers, Calculi for Constructive Communication, ILLC Dissertation Series, 1994-4, ILLC, 1994

[14] G. Wagner, Vivid logic. Knowledge-based reasoning with two kinds of negation, Lect. Notes Art. Intell., 764, Springer-Verlag, Berlin, 1994 | MR | Zbl

[15] H. Wansing, The logic of information structures, Lect. Notes Art. Intell., 683, Springer-Verlag, Berlin, 1993 | MR

[16] H. Wansing, “Semantics-based nonmonotonic inference”, Notre Dame J. Formal Logic, 36:1 (1995), 44–54 | DOI | MR | Zbl

[17] H. Wansing, “Negation”, The Blackwell guide to philosophical logic, ed. L.Goble (ed.), Basil Blackwell Publ., Cambridge, 2001, 415–436 | MR

[18] S. P. Odintsov, “Algebraic semantics for paraconsistent Nelson's logic”, J. Log. Comput., 13:4 (2003), 453–468 | DOI | MR | Zbl

[19] S. P. Odintsov, “On representation of $N4$-lattices”, Stud. Log., 76:3 (2004), 385–405 | DOI | MR | Zbl

[20] S. P. Odintsov, “The class of extensions of Nelson paraconsistent logic”, Stud. Log., 80:2 (2005), 291–320 | DOI | MR | Zbl

[21] S. P. Odintsov, D. Pearce, “Routley semantics for answer sets C”, Logic programming and nonmonotonic reasoning, Proc. (8th Int. Conf., Diamante, Italy, September 5-8, 2005), Lect. Notes Comput. Sci., 3662, ed. Ch. Baral, G. Greco, N. Leone (eds.), Springer-Verlag, Berlin, 2005, 343–355 | MR | Zbl

[22] H. Rasiowa, An algebraic approach to non-classical logics, North-Holland, Amsterdam, 1974 | MR | Zbl

[23] S. Burris, H. P. Sankappanavar, A course in universal algebra, Springer-Verlag, New York, 1981 | MR

[24] W. Rautenberg, Klassische und nichtclassische Aussagenlogik, Vieweg, Braunschweig, 1979 | MR | Zbl

[25] L. L. Maksimova, “Predtablichnye superintuitsonistskie logiki”, Algebra i logika, 11:5 (1972), 552–570 | MR

[26] L. L. Maksimova, “Teorema Kreiga v superintutsionistskikh logikakh i amalgamiruemye mnogoobraziya psevdobulevykh algebr”, Algebra i logika, 16:6 (1977), 643–681 | MR | Zbl