Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AL_2006_45_1_a4, author = {L. L. Maksimova}, title = {The {Projective} {Beth} {Property} and {Interpolation} in {Positive} and {Related} {Logics}}, journal = {Algebra i logika}, pages = {85--113}, publisher = {mathdoc}, volume = {45}, number = {1}, year = {2006}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/AL_2006_45_1_a4/} }
L. L. Maksimova. The Projective Beth Property and Interpolation in Positive and Related Logics. Algebra i logika, Tome 45 (2006) no. 1, pp. 85-113. http://geodesic.mathdoc.fr/item/AL_2006_45_1_a4/
[1] L. L. Maksimova, “Proektivnoe svoistvo Beta v modalnykh i superintuitsionistskikh logikakh”, Algebra i logika, 38:3 (1999), 316–333 | MR | Zbl
[2] L. L. Maksimova, “Superintuitsionistskie logiki i proektivnoe svoistvo Beta”, Algebra i logika, 38:6 (1999), 680–696 | MR | Zbl
[3] L. L. Maksimova, “Intuitionistic logic and implicit definability”, Ann. Pure Appl. Log., 105:1–3 (2000), 83–102 | DOI | MR | Zbl
[4] L. L. Maksimova, “Neyavnaya opredelimost v pozitivnykh logikakh”, Algebra i logika, 42:1 (2003), 65–93 | MR | Zbl
[5] L. L. Maksimova, “Opredelimost v normalnykh rasshireniyakh logiki $S4$”, Algebra i logika, 43:4 (2004), 387–410 | MR | Zbl
[6] L. L. Maksimova, “Teorema Kreiga v superintuitsionistskikh logikakh i amalgamiruemye mnogoobraziya psevdobulevykh algebr”, Algebra i logika, 16:6 (1977), 643–681 | MR | Zbl
[7] L. Maksimov, “Restricted interpolation in modal logics”, Advances in modal logic, 4, King's College Publications, London, 2003, 297–311 | MR | Zbl
[8] G. Kreisel, “Explicit definability in intuitionistic logic”, J. Symb. Log., 25 (1960), 389–390 | DOI
[9] L. L. Maksimova, “Analog teoremy Beta v normalnykh rasshireniyakh modalnoi logiki $K4$”, Sib. matem. zh., 33:6 (1992), 118–130 | MR
[10] W. Craig, “Three uses of Herbrand-Gentzen theorem in relating model theory”, J. Symb. Log., 22:3 (1957), 269–285 | DOI | MR | Zbl
[11] H. Rasiowa, R. Sikorski, The mathematics of metamathematics, PWN, Warszawa, 1963 | MR
[12] E. Hoogland, “Algebraic characterisations of various Beth definability properties”, Stud. Log., 65:1 (2000), 91–112 | DOI | MR | Zbl
[13] L. L. Maksimova, “Modalnye logiki i mnogoobraziya modalnykh algebr: svoistvo Beta, interpolyatsiya i amalgamiruemost”, Algebra i logika, 31:2 (1992), 145–166 | MR | Zbl
[14] J. Czelakowski, D. Pigozzi, “Amalgamation and interpolation in abstract algebraic logic”, Models, algebras and proofs, Sel. papers X Latin Am. Symp. math. logic held Bogota, Lect. Notes Pure Appl. Math., 203, eds. X. Caicedo, C. H. Montenegro, Marcel Dekker, New York, 1999, 187–265 | MR | Zbl
[15] I. Sain, “Beth's and Craig's properties via epimorphisms and amalgamation in algebraic logic”, Algebraic logic and universal algebra in computer science, Lect. Notes Comput. Sci., 425, eds. C. H. Bergman, R. D. Maddux, D. I. Pigozzi, Springer-Verlag, Berlin, 1990, 209–226 | MR
[16] L. L. Maksimova, “Interpolyatsiya i opredelimost v rasshireniyakh minimalnoi logiki”, Algebra i logika, 44:6 (2005), 726–750 | MR | Zbl
[17] L. L. Maksimova, “Razreshimost proektivnogo svoistva Beta v mnogoobraziyakh geitingovykh algebr”, Algebra i logika, 40:3 (2001), 290–301 | MR | Zbl
[18] L. L. Maksimova, “Ogranichennaya interpolyatsiya i proektivnoe svoistvo Beta v ekvatsionalnoi logike”, Algebra i logika, 42:6 (2003), 712–726 | MR
[19] D. M. Gabbay, L. Maksimova, Interpolation and De.nability: Modal and Intuitionistic Logics, Oxford Univ. Press, Oxford, 2005 | MR | Zbl
[20] W. Blok, Varieties of interior algebras, PhD Thesis, Univ. Amsterdam, 1976