Unilateral $o$-Groups
Algebra i logika, Tome 45 (2006) no. 1, pp. 20-27.

Voir la notice de l'article provenant de la source Math-Net.Ru

For a big number of varieties $\mathcal V$ of groups close to Engelian, it is proved that a variety of lattice-ordered groups generated by all linearly ordered groups in the class $\mathcal P\mathcal V=\bigcup_{k\in\mathbf Z_+}\mathcal V^k$ does not coincide with the variety $\mathcal O_l$ of all $o$-approximable lattice-ordered groups.
Keywords: unilateral $o$-group, lattice-ordered group.
Mots-clés : Engelian group
@article{AL_2006_45_1_a1,
     author = {A. W. Glass and N. Ya. Medvedev},
     title = {Unilateral $o${-Groups}},
     journal = {Algebra i logika},
     pages = {20--27},
     publisher = {mathdoc},
     volume = {45},
     number = {1},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2006_45_1_a1/}
}
TY  - JOUR
AU  - A. W. Glass
AU  - N. Ya. Medvedev
TI  - Unilateral $o$-Groups
JO  - Algebra i logika
PY  - 2006
SP  - 20
EP  - 27
VL  - 45
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2006_45_1_a1/
LA  - ru
ID  - AL_2006_45_1_a1
ER  - 
%0 Journal Article
%A A. W. Glass
%A N. Ya. Medvedev
%T Unilateral $o$-Groups
%J Algebra i logika
%D 2006
%P 20-27
%V 45
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2006_45_1_a1/
%G ru
%F AL_2006_45_1_a1
A. W. Glass; N. Ya. Medvedev. Unilateral $o$-Groups. Algebra i logika, Tome 45 (2006) no. 1, pp. 20-27. http://geodesic.mathdoc.fr/item/AL_2006_45_1_a1/

[1] N. Ya. Medvedev, “Razreshimye gruppy i mnogoobraziya $l$-grupp”, Algebra i logika, 44:3 (2005), 355–367 | MR | Zbl

[2] V. M. Kopytov, “O lineino uporyadochennykh razreshimykh gruppakh”, Algebra i logika, 12:6 (1973), 655–666 | MR | Zbl

[3] F. Point, “Milnor identities”, Commun. Algebra, 24:12 (1996), 3725–3744 | DOI | MR | Zbl

[4] F. Point, “Milnor property in finitely generated soluble groups”, Commun. Algebra, 31:3 (2003), 1475–1484 | DOI | MR | Zbl

[5] Y. K. Kim, A. H. Rhemtulla, “Weak maximality condition and polycyclic groups”, Proc. Am. Math. Soc., 123:3 (1995), 711–714 | DOI | MR | Zbl

[6] A. M. W. Glass, Partially ordered groups, Ser. Algebra, 7, World Sci. Press, Singapore, 1999 | MR | Zbl

[7] V. M. Kopytov, Reshetochno uporyadochennye gruppy, Nauka, M., 1984 | MR | Zbl

[8] M. I. Kargapolov, Yu. I. Merzlyakov, Osnovy teorii grupp, Nauka, M., 1977 | MR | Zbl