Quasirecognizability by the Set of Element Orders for Groups ${^3}D_4(q)$, for $q$ Even
Algebra i logika, Tome 45 (2006) no. 1, pp. 3-19.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that if $G$ is a finite group with an element order set as in the simple group ${^3}D_4(q)$, where $q$ is even, then the commutant of $G/F(G)$ is isomorphic to ${^3}D_4(q)$ and the factor group $G/G'$ is a cyclic $\{2,3\}$-group.
Keywords: finite group, set of element orders, quasirecognizability, prime graph.
Mots-clés : simple group
@article{AL_2006_45_1_a0,
     author = {O. A. Alekseeva},
     title = {Quasirecognizability by the {Set} of {Element} {Orders} for {Groups} ${^3}D_4(q)$, for $q$ {Even}},
     journal = {Algebra i logika},
     pages = {3--19},
     publisher = {mathdoc},
     volume = {45},
     number = {1},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2006_45_1_a0/}
}
TY  - JOUR
AU  - O. A. Alekseeva
TI  - Quasirecognizability by the Set of Element Orders for Groups ${^3}D_4(q)$, for $q$ Even
JO  - Algebra i logika
PY  - 2006
SP  - 3
EP  - 19
VL  - 45
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2006_45_1_a0/
LA  - ru
ID  - AL_2006_45_1_a0
ER  - 
%0 Journal Article
%A O. A. Alekseeva
%T Quasirecognizability by the Set of Element Orders for Groups ${^3}D_4(q)$, for $q$ Even
%J Algebra i logika
%D 2006
%P 3-19
%V 45
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2006_45_1_a0/
%G ru
%F AL_2006_45_1_a0
O. A. Alekseeva. Quasirecognizability by the Set of Element Orders for Groups ${^3}D_4(q)$, for $q$ Even. Algebra i logika, Tome 45 (2006) no. 1, pp. 3-19. http://geodesic.mathdoc.fr/item/AL_2006_45_1_a0/

[1] J. S. Williams, “Prime graph components of finite groups”, J. Algebra, 69:2 (1981), 487–513 | DOI | MR | Zbl

[2] A. S. Kondratev, “O komponentakh grafa prostykh chisel konechnykh prostykh grupp”, Matem. sb., 180:6 (1989), 787–797 | MR

[3] V. D. Mazurov, “Raspoznavanie konechnykh prostykh grupp $S_4(q)$ po poryadkam ikh elementov”, Algebra i logika, 41:2 (2002), 166–198 | MR | Zbl

[4] Nereshennye voprosy teorii grupp, Kourovskaya tetrad, 15-e izd., In-t matem. SO RAN, Novosibirsk, 2002 | MR

[5] O. A. Alekseeva, A. S. Kondratev, “O raspoznavaemosti gruppy $E_8(q)$ po mnozhestvu poryadkov elementov”, Ukr. matem. zh., 54:7 (2002), 1003–1008 | MR

[6] O. A. Alekseeva, A. S. Kondratev, “Kvaziraspoznavaemost odnogo klassa konechnykh prostykh grupp po mnozhestvu poryadkov elementov”, Sib. matem. zh., 44:2 (2003), 241–255 | MR | Zbl

[7] A. V. Vasilev, M. A. Grechkoseeva, “O raspoznavaemosti konechnykh prostykh ortogonalnykh grupp razmernosti $2^m$, $2^m+1$ i $2^m+2$”, Sib. matem. zh., 45:3 (2004), 510–526 | MR

[8] O. A. Alekseeva, A. S. Kondratev, “Kvaziraspoznavaemost po mnozhestvu poryadkov elementov grupp ${}^3D_4(q)$ i $F_4(q)$, $q$ nechetno”, Algebra i logika, 44:5 (2005), 517–539 | MR | Zbl

[9] M. Aschbacher, Finite group theory, Cambridge Univ. Press, Cambridge, 1986 | MR | Zbl

[10] J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker, R. A. Wilson, Atlas of finite groups, Clarendon Press, Oxford, 1985 | MR | Zbl

[11] Seminar po algebraicheskim gruppam, Mir, M., 1973 | MR

[12] R. Steinberg, Lektsii o gruppakh Shevalle, Mir, M., 1975 | MR | Zbl

[13] A. S. Kondratev, V. D. Mazurov, “Raspoznavanie znakoperemennykh grupp prostoi stepeni po poryadkam ikh elementov”, Sib. matem. zh., 41:2 (2000), 359–369 | MR

[14] K. Zsigmondy, “Zur Theorie der Potenzreste”, Monatsh. Math. Phys., 3 (1892), 265–284 | DOI | MR

[15] Pham Huu Tiep, “$p$-Steinberg characters of finite simple groups”, J. Algebra, 187:1 (1997), 304–319 | DOI | MR | Zbl

[16] D. I. Deriziotis, G. O. Michler, “Character table and blocks of finite simple triality groups ${}^3D_4(q)$”, Trans. Am. Math. Soc., 303:1 (1987), 39–70 | DOI | MR | Zbl

[17] M. R. Aleeva, “O konechnykh prostykh gruppakh s mnozhestvom poryadkov elementov kak u gruppy Frobeniusa ili dvoinoi gruppy Frobeniusa”, Matem. zametki, 73:3 (2003), 323–339 | MR | Zbl

[18] D. Gorenstein, R. Lyons, The local structure of finite groups of characteristic 2 type, Mem. Am. Math. Soc., 42, no. 276, Am. Math. Soc., Providence, RI, 1983 | MR