Quasirecognizability by the Set of Element Orders for Groups ${^3}D_4(q)$, for $q$ Even
Algebra i logika, Tome 45 (2006) no. 1, pp. 3-19

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that if $G$ is a finite group with an element order set as in the simple group ${^3}D_4(q)$, where $q$ is even, then the commutant of $G/F(G)$ is isomorphic to ${^3}D_4(q)$ and the factor group $G/G'$ is a cyclic $\{2,3\}$-group.
Keywords: finite group, set of element orders, quasirecognizability, prime graph.
Mots-clés : simple group
@article{AL_2006_45_1_a0,
     author = {O. A. Alekseeva},
     title = {Quasirecognizability by the {Set} of {Element} {Orders} for {Groups} ${^3}D_4(q)$, for $q$ {Even}},
     journal = {Algebra i logika},
     pages = {3--19},
     publisher = {mathdoc},
     volume = {45},
     number = {1},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2006_45_1_a0/}
}
TY  - JOUR
AU  - O. A. Alekseeva
TI  - Quasirecognizability by the Set of Element Orders for Groups ${^3}D_4(q)$, for $q$ Even
JO  - Algebra i logika
PY  - 2006
SP  - 3
EP  - 19
VL  - 45
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2006_45_1_a0/
LA  - ru
ID  - AL_2006_45_1_a0
ER  - 
%0 Journal Article
%A O. A. Alekseeva
%T Quasirecognizability by the Set of Element Orders for Groups ${^3}D_4(q)$, for $q$ Even
%J Algebra i logika
%D 2006
%P 3-19
%V 45
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2006_45_1_a0/
%G ru
%F AL_2006_45_1_a0
O. A. Alekseeva. Quasirecognizability by the Set of Element Orders for Groups ${^3}D_4(q)$, for $q$ Even. Algebra i logika, Tome 45 (2006) no. 1, pp. 3-19. http://geodesic.mathdoc.fr/item/AL_2006_45_1_a0/