Quasirecognizability by the Set of Element Orders for Groups ${^3}D_4(q)$, for $q$ Even
Algebra i logika, Tome 45 (2006) no. 1, pp. 3-19
Voir la notice de l'article provenant de la source Math-Net.Ru
It is proved that if $G$ is a finite group with an element order set as in the simple group ${^3}D_4(q)$, where $q$ is even, then the commutant of $G/F(G)$ is isomorphic to ${^3}D_4(q)$ and the factor group $G/G'$ is a cyclic $\{2,3\}$-group.
Keywords:
finite group, set of element orders, quasirecognizability, prime graph.
Mots-clés : simple group
Mots-clés : simple group
@article{AL_2006_45_1_a0,
author = {O. A. Alekseeva},
title = {Quasirecognizability by the {Set} of {Element} {Orders} for {Groups} ${^3}D_4(q)$, for $q$ {Even}},
journal = {Algebra i logika},
pages = {3--19},
publisher = {mathdoc},
volume = {45},
number = {1},
year = {2006},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/AL_2006_45_1_a0/}
}
O. A. Alekseeva. Quasirecognizability by the Set of Element Orders for Groups ${^3}D_4(q)$, for $q$ Even. Algebra i logika, Tome 45 (2006) no. 1, pp. 3-19. http://geodesic.mathdoc.fr/item/AL_2006_45_1_a0/