Frobenius Pairs with Perfect Involutions
Algebra i logika, Tome 44 (2005) no. 6, pp. 751-762

Voir la notice de l'article provenant de la source Math-Net.Ru

An involution $i$ of a group $G$ is said to be perfect in $G$ if any two non-commuting involutions in $i^G$ are conjugated by an involution in the same class. We generalize theorems of Jordan and M. Hall concerning sharply doubly transitive groups, and the Shunkov theorem on periodic groups with a finite isolated subgroup of even order.
Mots-clés : group
Keywords: sharply doubly transitive group, periodic group, involution, Frobenius pair.
@article{AL_2005_44_6_a4,
     author = {A. I. Sozutov},
     title = {Frobenius {Pairs} with {Perfect} {Involutions}},
     journal = {Algebra i logika},
     pages = {751--762},
     publisher = {mathdoc},
     volume = {44},
     number = {6},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2005_44_6_a4/}
}
TY  - JOUR
AU  - A. I. Sozutov
TI  - Frobenius Pairs with Perfect Involutions
JO  - Algebra i logika
PY  - 2005
SP  - 751
EP  - 762
VL  - 44
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2005_44_6_a4/
LA  - ru
ID  - AL_2005_44_6_a4
ER  - 
%0 Journal Article
%A A. I. Sozutov
%T Frobenius Pairs with Perfect Involutions
%J Algebra i logika
%D 2005
%P 751-762
%V 44
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2005_44_6_a4/
%G ru
%F AL_2005_44_6_a4
A. I. Sozutov. Frobenius Pairs with Perfect Involutions. Algebra i logika, Tome 44 (2005) no. 6, pp. 751-762. http://geodesic.mathdoc.fr/item/AL_2005_44_6_a4/