Frobenius Pairs with Perfect Involutions
Algebra i logika, Tome 44 (2005) no. 6, pp. 751-762
Voir la notice de l'article provenant de la source Math-Net.Ru
An involution $i$ of a group $G$ is said to be perfect in $G$ if any two non-commuting involutions in $i^G$ are conjugated by an involution in the same class. We generalize theorems of Jordan and M. Hall concerning sharply doubly transitive groups, and the Shunkov theorem on periodic groups with a finite isolated subgroup of even order.
Mots-clés :
group
Keywords: sharply doubly transitive group, periodic group, involution, Frobenius pair.
Keywords: sharply doubly transitive group, periodic group, involution, Frobenius pair.
@article{AL_2005_44_6_a4,
author = {A. I. Sozutov},
title = {Frobenius {Pairs} with {Perfect} {Involutions}},
journal = {Algebra i logika},
pages = {751--762},
publisher = {mathdoc},
volume = {44},
number = {6},
year = {2005},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/AL_2005_44_6_a4/}
}
A. I. Sozutov. Frobenius Pairs with Perfect Involutions. Algebra i logika, Tome 44 (2005) no. 6, pp. 751-762. http://geodesic.mathdoc.fr/item/AL_2005_44_6_a4/