Frobenius Pairs with Perfect Involutions
Algebra i logika, Tome 44 (2005) no. 6, pp. 751-762
An involution $i$ of a group $G$ is said to be perfect in $G$ if any two non-commuting involutions in $i^G$ are conjugated by an involution in the same class. We generalize theorems of Jordan and M. Hall concerning sharply doubly transitive groups, and the Shunkov theorem on periodic groups with a finite isolated subgroup of even order.
Mots-clés :
group
Keywords: sharply doubly transitive group, periodic group, involution, Frobenius pair.
Keywords: sharply doubly transitive group, periodic group, involution, Frobenius pair.
@article{AL_2005_44_6_a4,
author = {A. I. Sozutov},
title = {Frobenius {Pairs} with {Perfect} {Involutions}},
journal = {Algebra i logika},
pages = {751--762},
year = {2005},
volume = {44},
number = {6},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/AL_2005_44_6_a4/}
}
A. I. Sozutov. Frobenius Pairs with Perfect Involutions. Algebra i logika, Tome 44 (2005) no. 6, pp. 751-762. http://geodesic.mathdoc.fr/item/AL_2005_44_6_a4/
[1] A. M. Popov, Gruppy s sistemami frobeniusovykh podgrupp, IPTs KGTU, Krasnoyarsk, 2004
[2] V. D. Mazurov, “O tochno dvazhdy tranzitivnykh gruppakh”, Voprosy algebry i logiki, Trudy in-ta matem. SO RAN, 30, In-t matem. SO RAN, Novosibirsk, 1996, 114–118 | Zbl
[3] H. Wähling, Theorie der Fastkörper, Thalen Ferlag, Essen, 1987 | MR | Zbl
[4] M. Kholl, Teoriya grupp, IL, M., 1962
[5] V. P. Shunkov, “O nekotorom obobschenii teoremy Frobeniusa ni periodicheskie gruppy”, Algebra i logika, 6:3 (1967), 113–124 | MR
[6] A. Yu. Olshanskii, Geometriya opredelyayuschikh sootnoshenii v gruppakh, Nauka, M., 1989 | MR
[7] M. I. Kargapolov, Yu. I. Merzlyakov, Osnovy teorii grupp, Nauka, M., 1982