Interpolation and Definability in Extensions of the Minimal Logic
Algebra i logika, Tome 44 (2005) no. 6, pp. 726-750.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study into the interpolation property and the projective Beth property in extensions of Johansson's minimal logic. A family of logics of some special form is considered. Effective criteria are specified which allow us to verify whether an arbitrary logic in this family has a given property.
Keywords: interpolation property, projective Beth property, Johansson's minimal logic, extension of a logic.
@article{AL_2005_44_6_a3,
     author = {L. L. Maksimova},
     title = {Interpolation and {Definability} in {Extensions} of the {Minimal} {Logic}},
     journal = {Algebra i logika},
     pages = {726--750},
     publisher = {mathdoc},
     volume = {44},
     number = {6},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2005_44_6_a3/}
}
TY  - JOUR
AU  - L. L. Maksimova
TI  - Interpolation and Definability in Extensions of the Minimal Logic
JO  - Algebra i logika
PY  - 2005
SP  - 726
EP  - 750
VL  - 44
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2005_44_6_a3/
LA  - ru
ID  - AL_2005_44_6_a3
ER  - 
%0 Journal Article
%A L. L. Maksimova
%T Interpolation and Definability in Extensions of the Minimal Logic
%J Algebra i logika
%D 2005
%P 726-750
%V 44
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2005_44_6_a3/
%G ru
%F AL_2005_44_6_a3
L. L. Maksimova. Interpolation and Definability in Extensions of the Minimal Logic. Algebra i logika, Tome 44 (2005) no. 6, pp. 726-750. http://geodesic.mathdoc.fr/item/AL_2005_44_6_a3/

[1] L. L. Maksimova, “Teorema Kreiga v superintuitsionistskikh logikakh i amalgamiruemye mnogoobraziya”, Algebra i logika, 16:6 (1977), 643–681 | MR | Zbl

[2] L. L. Maksimova, “Intuitionistic logic and implicit definability”, Ann. Pure Appl. Log., 105:1–3 (2000), 83–102 | DOI | MR | Zbl

[3] L. L. Maksimova, “Interpolyatsionnaya teorema Kreiga i amalgamiruemye mnogoobraziya”, Dokl. Akad. Nauk SSSR, 237:6 (1977), 1281–1284 | MR | Zbl

[4] L. L. Maksimova, “Neyavnaya opredelimost v pozitivnykh logikakh”, Algebra i logika, 42:1 (2003), 65–93 | MR | Zbl

[5] L. L. Maksimova, “Proektivnoe svoistvo Beta v modalnykh i superintuitsionistskikh logikakh”, Algebra i logika, 38:3 (1999), 316–333 | MR | Zbl

[6] G. Kreisel, “Explicit definability in intuitionistic logic”, J. Symb. Log., 25 (1960), 389–390 | DOI

[7] W. Craig, “Three uses of Herbrand–Gentzen theorem in relating model theory”, J. Symb. Log., 22:3 (1957), 269–285 | DOI | MR | Zbl

[8] L. Maksimova, “Restricted interpolation in modal logics”, Advances in modal logic, 4, King's College Publications, London, 2003, 297–311 | MR | Zbl

[9] L. L. Maksimova, “Ob interpolyatsii v modalnykh logikakh”, Neklassicheskie logiki, Shtiintsa, Kishinev, 1987, 40–56 | MR

[10] H. Rasiowa, R. Sikorski, The mathematics of metamathematics, PWN, Warszawa, 1963 | MR

[11] S. Odintsov, “Logic of classic refutability and class of extensions of minimal logic”, Logic Log. Philos., 9 (2001), 91–107 | MR | Zbl

[12] L. L. Maksimova, “Superintuitsionistskie logiki i proektivnoe svoistvo Beta”, Algebra i logika, 38:6 (1999), 680–696 | MR | Zbl

[13] E. Hoogland, “Algebraic characterisations of various Beth definability properties”, Stud. Log., 65:1 (2000), 91–112 | DOI | MR | Zbl

[14] L. L. Maksimova, “Modalnye logiki i mnogoobraziya modalnykh algebr: svoistvo Beta, interpolyatsiya i amalgamiruemost”, Algebra i logika, 31:2 (1992), 145–166 | MR | Zbl

[15] J. Czelakowski, D. Pigozzi, “Amalgamation and interpolation in abstract algebraic logic”, Models, algebras and proofs. Sel. papers X Latin Am. Symp. math. logic held Bogota, Lect. Notes Pure Appl. Math., 203, eds. X. Caicedo, C. H. Montenegro, Marcel Dekker, New York, 1999, 187–265 | MR | Zbl

[16] I. Sain, “Beth's and Craig's properties via epimorphisms and amalgamation in algebraic logic”, Algebraic logic and universal algebra in computer science, Lect. Notes Comput. Sci., 425, eds. C. H. Bergman, R. D. Maddux, D. I. Pigozzi, Springer-Verlag, Berlin, 1990, 209–226 | MR

[17] K. Segerberg, “Propositional logics related to Heyting's and Johansson's”, Theoria, 34 (1968), 26–61 | MR