Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AL_2005_44_6_a3, author = {L. L. Maksimova}, title = {Interpolation and {Definability} in {Extensions} of the {Minimal} {Logic}}, journal = {Algebra i logika}, pages = {726--750}, publisher = {mathdoc}, volume = {44}, number = {6}, year = {2005}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/AL_2005_44_6_a3/} }
L. L. Maksimova. Interpolation and Definability in Extensions of the Minimal Logic. Algebra i logika, Tome 44 (2005) no. 6, pp. 726-750. http://geodesic.mathdoc.fr/item/AL_2005_44_6_a3/
[1] L. L. Maksimova, “Teorema Kreiga v superintuitsionistskikh logikakh i amalgamiruemye mnogoobraziya”, Algebra i logika, 16:6 (1977), 643–681 | MR | Zbl
[2] L. L. Maksimova, “Intuitionistic logic and implicit definability”, Ann. Pure Appl. Log., 105:1–3 (2000), 83–102 | DOI | MR | Zbl
[3] L. L. Maksimova, “Interpolyatsionnaya teorema Kreiga i amalgamiruemye mnogoobraziya”, Dokl. Akad. Nauk SSSR, 237:6 (1977), 1281–1284 | MR | Zbl
[4] L. L. Maksimova, “Neyavnaya opredelimost v pozitivnykh logikakh”, Algebra i logika, 42:1 (2003), 65–93 | MR | Zbl
[5] L. L. Maksimova, “Proektivnoe svoistvo Beta v modalnykh i superintuitsionistskikh logikakh”, Algebra i logika, 38:3 (1999), 316–333 | MR | Zbl
[6] G. Kreisel, “Explicit definability in intuitionistic logic”, J. Symb. Log., 25 (1960), 389–390 | DOI
[7] W. Craig, “Three uses of Herbrand–Gentzen theorem in relating model theory”, J. Symb. Log., 22:3 (1957), 269–285 | DOI | MR | Zbl
[8] L. Maksimova, “Restricted interpolation in modal logics”, Advances in modal logic, 4, King's College Publications, London, 2003, 297–311 | MR | Zbl
[9] L. L. Maksimova, “Ob interpolyatsii v modalnykh logikakh”, Neklassicheskie logiki, Shtiintsa, Kishinev, 1987, 40–56 | MR
[10] H. Rasiowa, R. Sikorski, The mathematics of metamathematics, PWN, Warszawa, 1963 | MR
[11] S. Odintsov, “Logic of classic refutability and class of extensions of minimal logic”, Logic Log. Philos., 9 (2001), 91–107 | MR | Zbl
[12] L. L. Maksimova, “Superintuitsionistskie logiki i proektivnoe svoistvo Beta”, Algebra i logika, 38:6 (1999), 680–696 | MR | Zbl
[13] E. Hoogland, “Algebraic characterisations of various Beth definability properties”, Stud. Log., 65:1 (2000), 91–112 | DOI | MR | Zbl
[14] L. L. Maksimova, “Modalnye logiki i mnogoobraziya modalnykh algebr: svoistvo Beta, interpolyatsiya i amalgamiruemost”, Algebra i logika, 31:2 (1992), 145–166 | MR | Zbl
[15] J. Czelakowski, D. Pigozzi, “Amalgamation and interpolation in abstract algebraic logic”, Models, algebras and proofs. Sel. papers X Latin Am. Symp. math. logic held Bogota, Lect. Notes Pure Appl. Math., 203, eds. X. Caicedo, C. H. Montenegro, Marcel Dekker, New York, 1999, 187–265 | MR | Zbl
[16] I. Sain, “Beth's and Craig's properties via epimorphisms and amalgamation in algebraic logic”, Algebraic logic and universal algebra in computer science, Lect. Notes Comput. Sci., 425, eds. C. H. Bergman, R. D. Maddux, D. I. Pigozzi, Springer-Verlag, Berlin, 1990, 209–226 | MR
[17] K. Segerberg, “Propositional logics related to Heyting's and Johansson's”, Theoria, 34 (1968), 26–61 | MR