Elementary Theory for $l$-Ideal Lattices of Abelian $l$-Groups
Algebra i logika, Tome 44 (2005) no. 5, pp. 540-559.

Voir la notice de l'article provenant de la source Math-Net.Ru

A description is furnished for ideal lattices of free vector lattices $\mathcal F_n$ with a finite number $n$ of free generators. It is proved that an elementary theory for $l$-ideal lattices of Abelian lattice-ordered groups is undecidable, which gives a negative solution to Problem 5.20 in the “Kourovka Notebook.”
Keywords: free vector lattice, ideal lattice, elementary theory.
@article{AL_2005_44_5_a1,
     author = {N. Ya. Medvedev},
     title = {Elementary {Theory} for $l${-Ideal} {Lattices} of {Abelian} $l${-Groups}},
     journal = {Algebra i logika},
     pages = {540--559},
     publisher = {mathdoc},
     volume = {44},
     number = {5},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2005_44_5_a1/}
}
TY  - JOUR
AU  - N. Ya. Medvedev
TI  - Elementary Theory for $l$-Ideal Lattices of Abelian $l$-Groups
JO  - Algebra i logika
PY  - 2005
SP  - 540
EP  - 559
VL  - 44
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2005_44_5_a1/
LA  - ru
ID  - AL_2005_44_5_a1
ER  - 
%0 Journal Article
%A N. Ya. Medvedev
%T Elementary Theory for $l$-Ideal Lattices of Abelian $l$-Groups
%J Algebra i logika
%D 2005
%P 540-559
%V 44
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2005_44_5_a1/
%G ru
%F AL_2005_44_5_a1
N. Ya. Medvedev. Elementary Theory for $l$-Ideal Lattices of Abelian $l$-Groups. Algebra i logika, Tome 44 (2005) no. 5, pp. 540-559. http://geodesic.mathdoc.fr/item/AL_2005_44_5_a1/

[1] Nereshennye voprosy teorii grupp. Kourovskaya tetrad, 15-e izd., In-t matem. SO RAN, Novosibirsk, 2002 | MR

[2] G. Birkgof, Teoriya reshetok, Nauka, M., 1984 | MR

[3] W. M. Beynon, “Duality theorems for finitely generated vector lattices”, Proc. London Math. Soc., 31 (1975), 114–128 | DOI | MR | Zbl

[4] V. M. Kopytov, Reshetochno uporyadochennye gruppy, Nauka, M., 1984 | MR | Zbl

[5] V. M. Kopytov, N. Ya. Medvedev, The theory of lattice-ordered groups, Kluwer Academic Publ., Dordrecht a.o., 1994 | MR | Zbl

[6] K. Baker, “Free vector lattices”, Canadian J. Math., 20 (1968), 58–66 | MR | Zbl

[7] W. M. Beynon, “Applications of duality in the theory of finitely generated lattice-ordered groups”, Canadian J. Math., 29 (1977), 243–254 | MR | Zbl

[8] H. Weyl, “Elementare Theorie der konvexen Polyeder”, Comment. Math. Helv., 7 (1935), 290–306 ; Matrichnye igry, 1961, 254–273, Fizmatgiz | DOI | MR | Zbl

[9] S. N. Chernikov, Lineinye neravenstva, Nauka, M., 1968 | MR | Zbl

[10] Yu. L. Ershov, Problemy razreshimosti i konstruktivnye modeli, Nauka, M., 1980 | MR

[11] G. Panti, “Prime ideals in free $l$-groups and free vector lattices”, J. Algebra, 219 (1999), 173–200 | DOI | MR | Zbl

[12] A. Tarski, Undecidable theories, North-Holland Publ. Co., Amsterdam, 1968 | MR | Zbl