The Property of Being Binary for $\aleph_0$-Categorical Weakly $o$-Minimal Theories
Algebra i logika, Tome 44 (2005) no. 4, pp. 459-473.

Voir la notice de l'article provenant de la source Math-Net.Ru

In [6], a complete description was furnished for $\aleph_0$-categorical $o$-minimal theories. That description implies that these theories are binary. We give a description for $\aleph_0$-categorical, binary, weakly $o$-minimal theories of convexity rank 1.
Keywords: weakly $o$-minimal theory, $\aleph_0$-categorical theory, binary theory.
@article{AL_2005_44_4_a3,
     author = {B. Sh. Kulpeshov},
     title = {The {Property} of {Being} {Binary} for $\aleph_0${-Categorical} {Weakly} $o${-Minimal} {Theories}},
     journal = {Algebra i logika},
     pages = {459--473},
     publisher = {mathdoc},
     volume = {44},
     number = {4},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2005_44_4_a3/}
}
TY  - JOUR
AU  - B. Sh. Kulpeshov
TI  - The Property of Being Binary for $\aleph_0$-Categorical Weakly $o$-Minimal Theories
JO  - Algebra i logika
PY  - 2005
SP  - 459
EP  - 473
VL  - 44
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2005_44_4_a3/
LA  - ru
ID  - AL_2005_44_4_a3
ER  - 
%0 Journal Article
%A B. Sh. Kulpeshov
%T The Property of Being Binary for $\aleph_0$-Categorical Weakly $o$-Minimal Theories
%J Algebra i logika
%D 2005
%P 459-473
%V 44
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2005_44_4_a3/
%G ru
%F AL_2005_44_4_a3
B. Sh. Kulpeshov. The Property of Being Binary for $\aleph_0$-Categorical Weakly $o$-Minimal Theories. Algebra i logika, Tome 44 (2005) no. 4, pp. 459-473. http://geodesic.mathdoc.fr/item/AL_2005_44_4_a3/

[1] M. A. Dickmann, “Elimination of quantifiers for ordered valuation rings”, Proceedings of the third Easter conference on model theory (Gross Köris, 1985), Seminarberichte, 70, Humboldt Univ., Berlin, 1985, 64–88 | MR | Zbl

[2] B. Sh. Kulpeshov, “Weakly $o$-minimal structures and some of their properties”, J. Symb. Log., 63:4 (1998), 1511–1528 | DOI | MR | Zbl

[3] B. Herwig, H. D. Macpherson, G. Martin, A. Nurtazin, J. K. Truss, “On $\aleph_0$-categorical weakly $o$-minimal structures”, Ann. Pure Appl. Logic, 101:1 (2000), 65–93 | DOI | MR | Zbl

[4] B. S. Baizhanov, “Orthogonality of one-types in weakly $o$-minimal theories”, Algebra and model theory. 2, ed. A. G. Pinus et al., Novosibirsk State Tech. Univ., Novosibirsk, 1999, 3–28 | MR

[5] B. S. Baizhanov, “Expansion of a model of a weakly o-minimal theory by a family of unary predicates”, J. Symb. Log., 66:3 (2001), 1382–1414 | DOI | MR | Zbl

[6] A. Pillay, Ch. Steinhorn,, “Definable sets in ordered structures. I”, Trans. Am. Math. Soc., 295 (1986), 565–592 | DOI | MR | Zbl

[7] B. Sh. Kulpeshov, “Some properties of .0-categorical weakly o-minimal theories”, Algebra and model theory, ed. A. G. Pinus et al., Novosibirsk State Tech. Univ., Novosibirsk, 1997, 78–98