Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AL_2005_44_4_a3, author = {B. Sh. Kulpeshov}, title = {The {Property} of {Being} {Binary} for $\aleph_0${-Categorical} {Weakly} $o${-Minimal} {Theories}}, journal = {Algebra i logika}, pages = {459--473}, publisher = {mathdoc}, volume = {44}, number = {4}, year = {2005}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/AL_2005_44_4_a3/} }
B. Sh. Kulpeshov. The Property of Being Binary for $\aleph_0$-Categorical Weakly $o$-Minimal Theories. Algebra i logika, Tome 44 (2005) no. 4, pp. 459-473. http://geodesic.mathdoc.fr/item/AL_2005_44_4_a3/
[1] M. A. Dickmann, “Elimination of quantifiers for ordered valuation rings”, Proceedings of the third Easter conference on model theory (Gross Köris, 1985), Seminarberichte, 70, Humboldt Univ., Berlin, 1985, 64–88 | MR | Zbl
[2] B. Sh. Kulpeshov, “Weakly $o$-minimal structures and some of their properties”, J. Symb. Log., 63:4 (1998), 1511–1528 | DOI | MR | Zbl
[3] B. Herwig, H. D. Macpherson, G. Martin, A. Nurtazin, J. K. Truss, “On $\aleph_0$-categorical weakly $o$-minimal structures”, Ann. Pure Appl. Logic, 101:1 (2000), 65–93 | DOI | MR | Zbl
[4] B. S. Baizhanov, “Orthogonality of one-types in weakly $o$-minimal theories”, Algebra and model theory. 2, ed. A. G. Pinus et al., Novosibirsk State Tech. Univ., Novosibirsk, 1999, 3–28 | MR
[5] B. S. Baizhanov, “Expansion of a model of a weakly o-minimal theory by a family of unary predicates”, J. Symb. Log., 66:3 (2001), 1382–1414 | DOI | MR | Zbl
[6] A. Pillay, Ch. Steinhorn,, “Definable sets in ordered structures. I”, Trans. Am. Math. Soc., 295 (1986), 565–592 | DOI | MR | Zbl
[7] B. Sh. Kulpeshov, “Some properties of .0-categorical weakly o-minimal theories”, Algebra and model theory, ed. A. G. Pinus et al., Novosibirsk State Tech. Univ., Novosibirsk, 1997, 78–98