Automorphisms of Tensor Completions of Algebras
Algebra i logika, Tome 44 (2005) no. 3, pp. 368-382.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the classical representation of different groups, frequent use is made of a linear automorphism group of various algebras. Since the linear automorphism group is only part of a full automorphism group, such an approach might seem to be too restrictive. In this connection, we point out a natural, wide class of algebras whose automorphisms are standard and are reducible to linear. Thus, for algebras in this class, studying the full automorphism group reduces to treating the linear, a traditional approach in the class of such algebras being quite general.
Mots-clés : automorphism
Keywords: tensor completion of algebras.
@article{AL_2005_44_3_a5,
     author = {K. N. Ponomarev},
     title = {Automorphisms of {Tensor} {Completions} of {Algebras}},
     journal = {Algebra i logika},
     pages = {368--382},
     publisher = {mathdoc},
     volume = {44},
     number = {3},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2005_44_3_a5/}
}
TY  - JOUR
AU  - K. N. Ponomarev
TI  - Automorphisms of Tensor Completions of Algebras
JO  - Algebra i logika
PY  - 2005
SP  - 368
EP  - 382
VL  - 44
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2005_44_3_a5/
LA  - ru
ID  - AL_2005_44_3_a5
ER  - 
%0 Journal Article
%A K. N. Ponomarev
%T Automorphisms of Tensor Completions of Algebras
%J Algebra i logika
%D 2005
%P 368-382
%V 44
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2005_44_3_a5/
%G ru
%F AL_2005_44_3_a5
K. N. Ponomarev. Automorphisms of Tensor Completions of Algebras. Algebra i logika, Tome 44 (2005) no. 3, pp. 368-382. http://geodesic.mathdoc.fr/item/AL_2005_44_3_a5/

[1] D. Segal, “On the automorphism group of certain Lie algebras”, Math. Proc. Camb. Philos. Soc., 106:1 (1989), 67–76 | DOI | MR | Zbl

[2] K. N. Ponomarev, “Polya predstavitelei kommutativnykh lokalnykh kolets i maksimalnye polya skalyarov konechnomernykh algebr”, Algebra i logika, 37:6 (1998), 667–686 | MR | Zbl

[3] K. N. Ponomarev, A. Firat, “Groups of automorphisms of Chevalley algebras”, Commun. Algebra, 29:9 (2001), 4139–4155 | DOI | MR | Zbl

[4] A. G. Myasnikov, V. N. Remeslennikov, “Opredelimost mnozhestva maltsevskikh baz i elementarnye teorii konechnomernykh algebr”, Sib. matem.zh., 24:2 (1983), 97–113 | MR | Zbl

[5] R. S. Pirs, Assotsiativnye algebry, Mir, M., 1986 | MR

[6] D. J. Melville, “Centroids of nilpotent Lie algebras”, Commun. Algebra, 20:12 (1992), 3649–3682 | DOI | MR | Zbl