Soluble Groups and Varieties of $l$-Groups
Algebra i logika, Tome 44 (2005) no. 3, pp. 355-367.

Voir la notice de l'article provenant de la source Math-Net.Ru

A sufficient condition is given under which factors of a system of normal convex subgroups of a linearly ordered (l. o. ) group are Abelian. Also, a sufficient condition is specified subject to which factors of a system of normal convex subgroups of an l. o. group are contained in a group variety $\mathcal V$. In particular, for every soluble l. o. group $G$ of solubility index $n$, $n\geqslant2$, factors of a system of normal convex subgroups are soluble l. o. groups of solubility index at most $n-1$. It is proved that the variety $\mathcal R$ of all lattice-ordered groups, approximable by linearly ordered groups, does not coincide with a variety generated by all soluble l. o. groups. It is shown that if $\mathcal V$ is any $o$-approximable variety of $l$-groups, and if every identity in the group signature is not identically true in $\mathcal V$, then $\mathcal V$ contains free l. o. groups.
Keywords: variety of $l$-groups
Mots-clés : soluble group.
@article{AL_2005_44_3_a4,
     author = {N. Ya. Medvedev},
     title = {Soluble {Groups} and {Varieties} of $l${-Groups}},
     journal = {Algebra i logika},
     pages = {355--367},
     publisher = {mathdoc},
     volume = {44},
     number = {3},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2005_44_3_a4/}
}
TY  - JOUR
AU  - N. Ya. Medvedev
TI  - Soluble Groups and Varieties of $l$-Groups
JO  - Algebra i logika
PY  - 2005
SP  - 355
EP  - 367
VL  - 44
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2005_44_3_a4/
LA  - ru
ID  - AL_2005_44_3_a4
ER  - 
%0 Journal Article
%A N. Ya. Medvedev
%T Soluble Groups and Varieties of $l$-Groups
%J Algebra i logika
%D 2005
%P 355-367
%V 44
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2005_44_3_a4/
%G ru
%F AL_2005_44_3_a4
N. Ya. Medvedev. Soluble Groups and Varieties of $l$-Groups. Algebra i logika, Tome 44 (2005) no. 3, pp. 355-367. http://geodesic.mathdoc.fr/item/AL_2005_44_3_a4/

[1] Nereshennye voprosy teorii grupp, Kourovskaya tetrad, 15-e izd., In-t matem. SO RAN, Novosibirsk, 2002 | MR

[2] V. M. Kopytov, N. Ya. Medvedev, Nereshennye voprosy teorii chastichno uporyadochennykh grupp, 5-ya Sibirsk. shkola mnogoobraz. algebr. sistem, Bar- naul, 1988, AGU, Barnaul, 1988

[3] M. I. Kargapolov, Yu. I. Merzlyakov, Osnovy teorii grupp, Nauka, M., 1977 | MR | Zbl

[4] V. M. Kopytov, Reshetochno uporyadochennye gruppy, Nauka, M., 1984 | MR | Zbl

[5] V. M. Kopytov, N. Ya. Medvedev, The theory of lattice-ordered groups, Kluwer Academic Publ., Dordrecht–Boston–London, 1994 | MR | Zbl

[6] F. Levi, “Contributions to the theory of ordered groups”, Proc. Indian Acad. Sci., Sect. A, 17 (1943), 199–201 | MR | Zbl

[7] V. M. Kopytov, “O lineino uporyadochennykh razreshimykh gruppakh”, Algebra i logika, 12:6 (1973), 655–666 | MR | Zbl

[8] V. V. Bludov, “Popolnenie lineino uporyadochennykh metabelevykh grupp”, Algebra i logika, 42:5 (2003), 542–565 | MR | Zbl

[9] A. H. Clifford, “A non-commutative ordinally simple linearly ordered group”, Proc. Am. Math. Soc., 2 (1951), 902–903 | DOI | MR | Zbl

[10] A. I. Kokorin, V. M. Kopytov, Lineino uporyadochennye gruppy, Nauka, M., 1972 | MR | Zbl