Automorphisms of Strongly Regular Krein Graphs without Triangles
Algebra i logika, Tome 44 (2005) no. 3, pp. 335-354
Cet article a éte moissonné depuis la source Math-Net.Ru
A strongly regular graph is called a Krein graph if, in one of the Krein conditions, an equality obtains for it. A strongly regular Krein graph $Kre(r)$ without triangles has parameters $((r^2+3r)^2,r^3+3r^2+r,0,r^2+r)$. It is known that $Kre(1)$ is a Klebsh graph, $Kre(2)$ is a Higman –Sims graph, and that a graph of type $Kre(3)$ does not exist. Let $G$ be the automorphism group of a hypothetical graph $\Gamma=Kre(5)$, $g$ be an element of odd prime order $p$ in $G$, and $\Omega=\operatorname{Fix}(g)$. It is proved that either $\Omega$ is the empty graph and $p=5$, or $\Omega$ is a one-vertex graph and $p=41$, or $\Omega$ is a $2$-clique and $p=17$, or $\Omega$ is the complete bipartite graph $K_{8,8}$, from which the maximal matching is removed, and $p=3$.
Mots-clés :
automorphism, $n$-clique, $n$-coclique.
Keywords: Krein graph, Klebsh graph, Higman – Sims graph
Keywords: Krein graph, Klebsh graph, Higman – Sims graph
@article{AL_2005_44_3_a3,
author = {A. A. Makhnev and V. V. Nosov},
title = {Automorphisms of {Strongly} {Regular} {Krein} {Graphs} without {Triangles}},
journal = {Algebra i logika},
pages = {335--354},
year = {2005},
volume = {44},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/AL_2005_44_3_a3/}
}
A. A. Makhnev; V. V. Nosov. Automorphisms of Strongly Regular Krein Graphs without Triangles. Algebra i logika, Tome 44 (2005) no. 3, pp. 335-354. http://geodesic.mathdoc.fr/item/AL_2005_44_3_a3/
[1] P. Cameron, J. Van Lint, Designs, graphs, codes and their links, Lond. Math. Soc. Stud. Texts, 22, Cambridge Univ. Press., Cambridge, 1981 | MR | Zbl
[2] S. R. Zaripov, A. A. Makhnev, I. P. Yablonko, “O silno regulyarnykh grafakh bez treugolnikov”, Algebra i lineinaya optimizatsiya, Tr. mezhd. semin., UrO RAN, Ekaterinburg, 2002, 117–121 | MR
[3] P. Cameron, Permutation groups, Lond. Math. Soc. Stud. Texts, 45, Cambridge Univ. Press., Cambridge, 1999 | MR | Zbl