Bounded Algebraic Geometry over a~Free Lie~Algebra
Algebra i logika, Tome 44 (2005) no. 3, pp. 269-304.

Voir la notice de l'article provenant de la source Math-Net.Ru

Bounded algebraic sets over a free Lie algebra $F$ over a field $k$ are classified in three equivalent languages: (1) in terms of algebraic sets; (2) in terms of radicals of algebraic sets; (3) in terms of coordinate algebras of algebraic sets.
Keywords: arithmetic hierarchy, Rogers semilattice, elementary theory.
@article{AL_2005_44_3_a1,
     author = {E. Yu. Daniyarova and V. N. Remeslennikov},
     title = {Bounded {Algebraic} {Geometry} over {a~Free} {Lie~Algebra}},
     journal = {Algebra i logika},
     pages = {269--304},
     publisher = {mathdoc},
     volume = {44},
     number = {3},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2005_44_3_a1/}
}
TY  - JOUR
AU  - E. Yu. Daniyarova
AU  - V. N. Remeslennikov
TI  - Bounded Algebraic Geometry over a~Free Lie~Algebra
JO  - Algebra i logika
PY  - 2005
SP  - 269
EP  - 304
VL  - 44
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2005_44_3_a1/
LA  - ru
ID  - AL_2005_44_3_a1
ER  - 
%0 Journal Article
%A E. Yu. Daniyarova
%A V. N. Remeslennikov
%T Bounded Algebraic Geometry over a~Free Lie~Algebra
%J Algebra i logika
%D 2005
%P 269-304
%V 44
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2005_44_3_a1/
%G ru
%F AL_2005_44_3_a1
E. Yu. Daniyarova; V. N. Remeslennikov. Bounded Algebraic Geometry over a~Free Lie~Algebra. Algebra i logika, Tome 44 (2005) no. 3, pp. 269-304. http://geodesic.mathdoc.fr/item/AL_2005_44_3_a1/

[1] G. Baumslag, A. G. Myasnikov, V. N. Remeslennikov, “Algebraic geometry over groups I: algebraic sets and ideal theory”, J. Algebra, 219:1 (1999), 16–79 | DOI | MR | Zbl

[2] A. G. Myasnikov, V. N. Remeslennikov, “Algebraic geometry over groups II: logical foundations”, J. Algebra, 234:1 (2000), 225–276 | DOI | MR | Zbl

[3] E. Yu. Daniyarova, Elementy algebraicheskoi geometrii nad algebrami Li, In-t matem. SO RAN, Novosibirsk, 2004

[4] E. Yu. Daniyarova, I. V. Kazachkov, V. N. Remeslennikov, “Algebraicheskaya geometriya nad svobodnoi metabelevoi algebroi Li I: $U$-algebry i universalnye klassy”, Fundam. priklad. matem., 9:3 (2003), 37–63 | MR | Zbl

[5] E. Yu. Daniyarova, I. V. Kazachkov, V. N. Remeslennikov, “Algebraicheskaya geometriya nad svobodnoi metabelevoi algebroi Li II: sluchai konechnogo polya”, Fundam. priklad. matem., 9:3 (2003), 65–87 | MR | Zbl

[6] E. Yu. Daniyarova, I. V. Kazachkov, V. N. Remeslennikov, “Poluoblasti i metabelevy proizvedeniya metabelevykh algebr Li”, Itogi nauki tekhn. Sovremennaya matematika, VINITI, M. (to appear)

[7] Yu. A. Bakhturin, Tozhdestva v algebrakh Li, Nauka, M, 1985 | MR | Zbl

[8] A. I. Shirshov, Izbrannye trudy, Koltsa i algebry, Nauka, M, 1984 | MR | Zbl