Lattices of Dominions in Quasivarieties of Abelian~Groups
Algebra i logika, Tome 44 (2005) no. 2, pp. 238-251.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\mathcal M$ be any quasivariety of Abelian groups, $\operatorname{dom}^{\mathcal M}_G(H)$ be the dominion of a subgroup $H$ of a group $G$ in $\mathcal M$, and $L_q(\mathcal M)$ be the lattice of subquasivarieties of $\mathcal M$. It is proved that $\operatorname{dom}^{\mathcal M}_G(H)$ coincides with a least normal subgroup of the group $G$ containing $H$, the factor group with respect to which is in $\mathcal M$. Conditions are specified subject to which the set $L(G,H,\mathcal M)=\{\operatorname{dom}^{\mathcal N}_G(H)\mid\mathcal N\in L_q(\mathcal M)\}$ forms a lattice under set-theoretic inclusion and the map $\varphi\colon L_q(\mathcal M)\rightarrow L(G,H,\mathcal M)$ such that $\varphi (\mathcal N)=\operatorname{dom}^{\mathcal N}_G(H)$ for any quasivariety $\mathcal N\in L_q(\mathcal M)$ is an antihomomorphism of the lattice $L_q(\mathcal M)$ onto the lattice $L(G,H,\mathcal M)$.
Keywords: quasivariety, dominion, lattice
Mots-clés : group.
@article{AL_2005_44_2_a5,
     author = {S. A. Shakhova},
     title = {Lattices of {Dominions} in {Quasivarieties} of {Abelian~Groups}},
     journal = {Algebra i logika},
     pages = {238--251},
     publisher = {mathdoc},
     volume = {44},
     number = {2},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2005_44_2_a5/}
}
TY  - JOUR
AU  - S. A. Shakhova
TI  - Lattices of Dominions in Quasivarieties of Abelian~Groups
JO  - Algebra i logika
PY  - 2005
SP  - 238
EP  - 251
VL  - 44
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2005_44_2_a5/
LA  - ru
ID  - AL_2005_44_2_a5
ER  - 
%0 Journal Article
%A S. A. Shakhova
%T Lattices of Dominions in Quasivarieties of Abelian~Groups
%J Algebra i logika
%D 2005
%P 238-251
%V 44
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2005_44_2_a5/
%G ru
%F AL_2005_44_2_a5
S. A. Shakhova. Lattices of Dominions in Quasivarieties of Abelian~Groups. Algebra i logika, Tome 44 (2005) no. 2, pp. 238-251. http://geodesic.mathdoc.fr/item/AL_2005_44_2_a5/

[1] J. R. Isbell, “Epimorphisms and dominions”, Proc. Conf. Categor. Algebra (La Jolla 1965), Springer-Verlag, New York, 1966, 232–246 | MR

[2] P. V. Higgins, “Epimorphisms and amalgams”, Colloq. Math., 56:1 (1988), 1–17 | MR | Zbl

[3] A. Magidin, “Dominions in varieties of nilpotent groups”, Commun. Algebra, 28:3 (2000), 1241–1270 | DOI | MR | Zbl

[4] D. Wasserman, Epimorphisms and dominions in varieties of lattices, Ph.D. thesis, Univ. California, Berkeley, 2001

[5] G. Bergman, “Ordering coproducts of groups and semigroups”, J. Algebra, 133:2 (1990), 313–339 | DOI | MR | Zbl

[6] A. I. Maltsev, Algebraicheskie sistemy, Nauka, M., 1970 | MR

[7] V. A. Gorbunov, Algebraicheskaya teoriya kvazimnogoobrazii, Sib. shkola algebry i logiki, Nauchnaya kniga (IDMI), Novosibirsk, 1999 | Zbl

[8] A. Budkin, “Dominions in quasivarieties of universal algebras”, Stud. Log., 78:1–2 (2004), 120–127 | MR

[9] A. A. Vinogradov, “Kvazimnogoobraziya abelevykh grupp”, Algebra i logika, 4:6 (1965), 15–19 | MR | Zbl

[10] A. I. Budkin, Kvazimnogoobraziya grupp, Altaiskii gos. un-t, Barnaul, 2002

[11] G. Birkgof, Teoriya reshetok, Nauka, M., 1984 | MR

[12] M. I. Kargapolov, Yu. I. Merzlyakov, Osnovy teorii grupp, Nauka, M., 1982 | MR | Zbl