Gr\"obner--Shirshov Bases for the Lie Algebra
Algebra i logika, Tome 44 (2005) no. 2, pp. 131-147.

Voir la notice de l'article provenant de la source Math-Net.Ru

We estimate Gröbner–Shirshov bases for the Lie algebra $A_n$ given arbitrary orders of generators (nodes of a Dynkin graph). Previously, the Gröbner–Shirshov basis was computed in [1] for the particular case where nodes of the Dynkin graph are ordered successively.
Keywords: Lie algebra, Gröbner–Shirshov basis.
@article{AL_2005_44_2_a0,
     author = {A. N. Koryukin},
     title = {Gr\"obner--Shirshov {Bases} for the {Lie} {Algebra}},
     journal = {Algebra i logika},
     pages = {131--147},
     publisher = {mathdoc},
     volume = {44},
     number = {2},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2005_44_2_a0/}
}
TY  - JOUR
AU  - A. N. Koryukin
TI  - Gr\"obner--Shirshov Bases for the Lie Algebra
JO  - Algebra i logika
PY  - 2005
SP  - 131
EP  - 147
VL  - 44
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2005_44_2_a0/
LA  - ru
ID  - AL_2005_44_2_a0
ER  - 
%0 Journal Article
%A A. N. Koryukin
%T Gr\"obner--Shirshov Bases for the Lie Algebra
%J Algebra i logika
%D 2005
%P 131-147
%V 44
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2005_44_2_a0/
%G ru
%F AL_2005_44_2_a0
A. N. Koryukin. Gr\"obner--Shirshov Bases for the Lie Algebra. Algebra i logika, Tome 44 (2005) no. 2, pp. 131-147. http://geodesic.mathdoc.fr/item/AL_2005_44_2_a0/

[1] L. A. Bokut, A. A. Klein, “Serre relations and Gröbner–Shirshov bases for simple Lie algebras I”, Int. J. Algebra Comput., 6:4 (1996), 389–400 | DOI | MR | Zbl

[2] A. I. Shirshov, “O svobodnykh koltsakh Li”, Matem. sbornik, 45(87) (1958), 113–122 | Zbl

[3] M. Lothaire, Combinatorics on words, Reading, Encycl. Math. Appl., 17, Addison-Wesley, Massachusetts, etc., 1983 | MR | Zbl

[4] C. Reutenauer, Free Lie algebras, London Math. Soc. Monogr., New Ser., 7, Clarendon Press, Oxford, 1993 | MR | Zbl

[5] P. Lalonde, A. Ram, “Standard Lyndon bases of Lie algebras and enveloping algebras”, Trans. Am. Math. Soc., 347:5 (1995), 1821–1830 | DOI | MR | Zbl

[6] J. E. Humphreys, Introduction to Lie Algebras and Representation Theory, Grad. Texts Math., 9, Springer-Verlag, New York, Heidelberg, Berlin, 1972 | MR | Zbl