The Löwenheim–Skolem–Mal'tsev Theorem for $\mathbb{HF}$-Structures
Algebra i logika, Tome 43 (2004) no. 6, pp. 749-758

Voir la notice de l'article provenant de la source Math-Net.Ru

We deal with the problem asking whether hereditarily finite superstructures have elementary extensions of the form $\mathbb{HF}(\mathfrak M)$. In so doing, we settle the question whether a theory for some hereditarily finite superstructure have $\mathbb{HF}(\mathfrak M)$ models of arbitrarily large cardinality. A Hanf number is shown to exist, and we provide an exact bound for the countable case.
Keywords: hereditarily finite superstructure, Hanf number.
@article{AL_2004_43_6_a5,
     author = {V. G. Puzarenko},
     title = {The {L\"owenheim{\textendash}Skolem{\textendash}Mal'tsev} {Theorem} for $\mathbb{HF}${-Structures}},
     journal = {Algebra i logika},
     pages = {749--758},
     publisher = {mathdoc},
     volume = {43},
     number = {6},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2004_43_6_a5/}
}
TY  - JOUR
AU  - V. G. Puzarenko
TI  - The Löwenheim–Skolem–Mal'tsev Theorem for $\mathbb{HF}$-Structures
JO  - Algebra i logika
PY  - 2004
SP  - 749
EP  - 758
VL  - 43
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2004_43_6_a5/
LA  - ru
ID  - AL_2004_43_6_a5
ER  - 
%0 Journal Article
%A V. G. Puzarenko
%T The Löwenheim–Skolem–Mal'tsev Theorem for $\mathbb{HF}$-Structures
%J Algebra i logika
%D 2004
%P 749-758
%V 43
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2004_43_6_a5/
%G ru
%F AL_2004_43_6_a5
V. G. Puzarenko. The Löwenheim–Skolem–Mal'tsev Theorem for $\mathbb{HF}$-Structures. Algebra i logika, Tome 43 (2004) no. 6, pp. 749-758. http://geodesic.mathdoc.fr/item/AL_2004_43_6_a5/