The Löwenheim–Skolem–Mal'tsev Theorem for $\mathbb{HF}$-Structures
Algebra i logika, Tome 43 (2004) no. 6, pp. 749-758
Cet article a éte moissonné depuis la source Math-Net.Ru
We deal with the problem asking whether hereditarily finite superstructures have elementary extensions of the form $\mathbb{HF}(\mathfrak M)$. In so doing, we settle the question whether a theory for some hereditarily finite superstructure have $\mathbb{HF}(\mathfrak M)$ models of arbitrarily large cardinality. A Hanf number is shown to exist, and we provide an exact bound for the countable case.
Keywords:
hereditarily finite superstructure, Hanf number.
@article{AL_2004_43_6_a5,
author = {V. G. Puzarenko},
title = {The {L\"owenheim{\textendash}Skolem{\textendash}Mal'tsev} {Theorem} for $\mathbb{HF}${-Structures}},
journal = {Algebra i logika},
pages = {749--758},
year = {2004},
volume = {43},
number = {6},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/AL_2004_43_6_a5/}
}
V. G. Puzarenko. The Löwenheim–Skolem–Mal'tsev Theorem for $\mathbb{HF}$-Structures. Algebra i logika, Tome 43 (2004) no. 6, pp. 749-758. http://geodesic.mathdoc.fr/item/AL_2004_43_6_a5/
[1] Yu. L. Ershov, Opredelimost i vychislimost, Sibirskaya shkola algebry i logiki, Nauchnaya kniga (NII MIOO NGU), Novosibirsk, 1996 | MR | Zbl
[2] V. G. Puzarenko, “O teorii modelei na nasledstvenno konechnykh nadstroikakh”, Algebra i logika, 41:2 (2002), 199–222 | MR | Zbl
[3] J. Barwise, Admissible Sets and Structures, Springer-Verlag, Berlin a.o., 1975 | MR | Zbl
[4] G. Keisler, Ch. Ch. Chen,, Teoriya modelei, Mir, M., 1977 | MR