The L\"owenheim--Skolem--Mal'tsev Theorem for $\mathbb{HF}$-Structures
Algebra i logika, Tome 43 (2004) no. 6, pp. 749-758.

Voir la notice de l'article provenant de la source Math-Net.Ru

We deal with the problem asking whether hereditarily finite superstructures have elementary extensions of the form $\mathbb{HF}(\mathfrak M)$. In so doing, we settle the question whether a theory for some hereditarily finite superstructure have $\mathbb{HF}(\mathfrak M)$ models of arbitrarily large cardinality. A Hanf number is shown to exist, and we provide an exact bound for the countable case.
Keywords: hereditarily finite superstructure, Hanf number.
@article{AL_2004_43_6_a5,
     author = {V. G. Puzarenko},
     title = {The {L\"owenheim--Skolem--Mal'tsev} {Theorem} for $\mathbb{HF}${-Structures}},
     journal = {Algebra i logika},
     pages = {749--758},
     publisher = {mathdoc},
     volume = {43},
     number = {6},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2004_43_6_a5/}
}
TY  - JOUR
AU  - V. G. Puzarenko
TI  - The L\"owenheim--Skolem--Mal'tsev Theorem for $\mathbb{HF}$-Structures
JO  - Algebra i logika
PY  - 2004
SP  - 749
EP  - 758
VL  - 43
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2004_43_6_a5/
LA  - ru
ID  - AL_2004_43_6_a5
ER  - 
%0 Journal Article
%A V. G. Puzarenko
%T The L\"owenheim--Skolem--Mal'tsev Theorem for $\mathbb{HF}$-Structures
%J Algebra i logika
%D 2004
%P 749-758
%V 43
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2004_43_6_a5/
%G ru
%F AL_2004_43_6_a5
V. G. Puzarenko. The L\"owenheim--Skolem--Mal'tsev Theorem for $\mathbb{HF}$-Structures. Algebra i logika, Tome 43 (2004) no. 6, pp. 749-758. http://geodesic.mathdoc.fr/item/AL_2004_43_6_a5/

[1] Yu. L. Ershov, Opredelimost i vychislimost, Sibirskaya shkola algebry i logiki, Nauchnaya kniga (NII MIOO NGU), Novosibirsk, 1996 | MR | Zbl

[2] V. G. Puzarenko, “O teorii modelei na nasledstvenno konechnykh nadstroikakh”, Algebra i logika, 41:2 (2002), 199–222 | MR | Zbl

[3] J. Barwise, Admissible Sets and Structures, Springer-Verlag, Berlin a.o., 1975 | MR | Zbl

[4] G. Keisler, Ch. Ch. Chen,, Teoriya modelei, Mir, M., 1977 | MR