Elementary Equivalence of Derived Structures of Free Semigroups, Unars, and Groups
Algebra i logika, Tome 43 (2004) no. 6, pp. 730-748.

Voir la notice de l'article provenant de la source Math-Net.Ru

We deal in elementary equivalence on arbitrary structures of free algebras in a series of varieties.
Keywords: elementary equivalence, free algebra, semigroup, unar.
Mots-clés : group
@article{AL_2004_43_6_a4,
     author = {A. G. Pinus},
     title = {Elementary {Equivalence} of {Derived} {Structures} of {Free} {Semigroups,} {Unars,} and {Groups}},
     journal = {Algebra i logika},
     pages = {730--748},
     publisher = {mathdoc},
     volume = {43},
     number = {6},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2004_43_6_a4/}
}
TY  - JOUR
AU  - A. G. Pinus
TI  - Elementary Equivalence of Derived Structures of Free Semigroups, Unars, and Groups
JO  - Algebra i logika
PY  - 2004
SP  - 730
EP  - 748
VL  - 43
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2004_43_6_a4/
LA  - ru
ID  - AL_2004_43_6_a4
ER  - 
%0 Journal Article
%A A. G. Pinus
%T Elementary Equivalence of Derived Structures of Free Semigroups, Unars, and Groups
%J Algebra i logika
%D 2004
%P 730-748
%V 43
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2004_43_6_a4/
%G ru
%F AL_2004_43_6_a4
A. G. Pinus. Elementary Equivalence of Derived Structures of Free Semigroups, Unars, and Groups. Algebra i logika, Tome 43 (2004) no. 6, pp. 730-748. http://geodesic.mathdoc.fr/item/AL_2004_43_6_a4/

[1] S. Shelah, “There are just four second-order quantifiers”, Isr. J. Math., 15:2 (1973), 282–300 | DOI | MR | Zbl

[2] S. Shelah, “First order theory of permutation groups”, Isr. J. Math., 14:1 (1973), 149–162 | DOI | MR | Zbl

[3] S. Shelah, “Interpreting set theory in the endomorphism semi-group of a free algebra or in a category”, Ann. Sci. Univ. Clermont. 60, Math., 13 (1976), 1–29 | MR | Zbl

[4] Yu. M. Vazhenin, A. G. Pinus, “Elementarnaya klassifikatsiya i razreshimost terii proizvodnykh struktur” (to appear)

[5] A. I. Maltsev, “K obschei teorii algebraicheskikh sistem”, Matem. sb., 35:1 (1954), 1–20

[6] A. G. Pinus, “Elementarnaya ekvivalentnost reshetok razbienii”, Sib. matem. zh., 28:3 (1988), 211–212 | MR

[7] A. G. Pinus, G. Rouz, “Elementarnaya ekvivalentnost reshetok podalgebr svobodnykh algebr”, Algebra i logika, 39:5 (2000), 595–601 | MR | Zbl

[8] A. G. Pinus, H. Rose, “Second order equivalence of cardinals: an algebraic approach”, Contributions to General Algebra 13, ed. I. Chajda et al., Verlag Johannes Heyn, Klagenfurt, 2001, 275–284 | MR | Zbl

[9] O. Belegradek, V. Tolstykh, “The logical complexity of theories associated with infinite dimensional vector spaces”, Proc. Math. Easter Conf. Model Theory, Berlin, 1991, 12–34

[10] B. Jónsson, E. Nelson, “Relatively free products in regular varieties”, Algebra Univers., 4:1 (1974), 14–19 | DOI | MR | Zbl