Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AL_2004_43_6_a4, author = {A. G. Pinus}, title = {Elementary {Equivalence} of {Derived} {Structures} of {Free} {Semigroups,} {Unars,} and {Groups}}, journal = {Algebra i logika}, pages = {730--748}, publisher = {mathdoc}, volume = {43}, number = {6}, year = {2004}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/AL_2004_43_6_a4/} }
A. G. Pinus. Elementary Equivalence of Derived Structures of Free Semigroups, Unars, and Groups. Algebra i logika, Tome 43 (2004) no. 6, pp. 730-748. http://geodesic.mathdoc.fr/item/AL_2004_43_6_a4/
[1] S. Shelah, “There are just four second-order quantifiers”, Isr. J. Math., 15:2 (1973), 282–300 | DOI | MR | Zbl
[2] S. Shelah, “First order theory of permutation groups”, Isr. J. Math., 14:1 (1973), 149–162 | DOI | MR | Zbl
[3] S. Shelah, “Interpreting set theory in the endomorphism semi-group of a free algebra or in a category”, Ann. Sci. Univ. Clermont. 60, Math., 13 (1976), 1–29 | MR | Zbl
[4] Yu. M. Vazhenin, A. G. Pinus, “Elementarnaya klassifikatsiya i razreshimost terii proizvodnykh struktur” (to appear)
[5] A. I. Maltsev, “K obschei teorii algebraicheskikh sistem”, Matem. sb., 35:1 (1954), 1–20
[6] A. G. Pinus, “Elementarnaya ekvivalentnost reshetok razbienii”, Sib. matem. zh., 28:3 (1988), 211–212 | MR
[7] A. G. Pinus, G. Rouz, “Elementarnaya ekvivalentnost reshetok podalgebr svobodnykh algebr”, Algebra i logika, 39:5 (2000), 595–601 | MR | Zbl
[8] A. G. Pinus, H. Rose, “Second order equivalence of cardinals: an algebraic approach”, Contributions to General Algebra 13, ed. I. Chajda et al., Verlag Johannes Heyn, Klagenfurt, 2001, 275–284 | MR | Zbl
[9] O. Belegradek, V. Tolstykh, “The logical complexity of theories associated with infinite dimensional vector spaces”, Proc. Math. Easter Conf. Model Theory, Berlin, 1991, 12–34
[10] B. Jónsson, E. Nelson, “Relatively free products in regular varieties”, Algebra Univers., 4:1 (1974), 14–19 | DOI | MR | Zbl