Semigroup Varieties on Whose Free Objects Almost All Fully Invariant Congruences are Weakly Permutable
Algebra i logika, Tome 43 (2004) no. 6, pp. 635-649.

Voir la notice de l'article provenant de la source Math-Net.Ru

A semigroup variety is said to be of index $\leqslant2$ if all nil-semigroups of the variety are semigroups with zero multiplication. We describe all semigroup varieties $\mathcal V$ of index $\leqslant2$ on free objects of which every two fully invariant congruences contained in the least semilattice congruence are weakly permutable, and semigroup varieties of index $\leqslant2$ all of whose subvarieties share the above-mentioned property.
Keywords: semigroup variety, nil-semigroup, weakly permutable congruence, fully invariant congruence.
@article{AL_2004_43_6_a0,
     author = {B. M. Vernikov},
     title = {Semigroup {Varieties} on {Whose} {Free} {Objects} {Almost} {All} {Fully} {Invariant} {Congruences} are {Weakly} {Permutable}},
     journal = {Algebra i logika},
     pages = {635--649},
     publisher = {mathdoc},
     volume = {43},
     number = {6},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2004_43_6_a0/}
}
TY  - JOUR
AU  - B. M. Vernikov
TI  - Semigroup Varieties on Whose Free Objects Almost All Fully Invariant Congruences are Weakly Permutable
JO  - Algebra i logika
PY  - 2004
SP  - 635
EP  - 649
VL  - 43
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2004_43_6_a0/
LA  - ru
ID  - AL_2004_43_6_a0
ER  - 
%0 Journal Article
%A B. M. Vernikov
%T Semigroup Varieties on Whose Free Objects Almost All Fully Invariant Congruences are Weakly Permutable
%J Algebra i logika
%D 2004
%P 635-649
%V 43
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2004_43_6_a0/
%G ru
%F AL_2004_43_6_a0
B. M. Vernikov. Semigroup Varieties on Whose Free Objects Almost All Fully Invariant Congruences are Weakly Permutable. Algebra i logika, Tome 43 (2004) no. 6, pp. 635-649. http://geodesic.mathdoc.fr/item/AL_2004_43_6_a0/

[1] P. R. Jones, Semigroups, theory and applications, Proc. Conf. (Oberwolfach, FRG, 1986), Lect. Notes Math., 1320, 1988 | MR | Zbl

[2] P. Lipparini, “$n$-permutable varieties satisfy non trivial congruence identities”, Algebra Univers., 33:2 (1995), 159–168 | DOI | MR | Zbl

[3] E. J. Tully, “The equivalence, for semigroup varieties, of two properties concerning congruence relations”, Bull. Am. Math. Soc., 70:3 (1964), 399–400 | DOI | MR | Zbl

[4] F. J. Pastijn, “Commuting fully invariant congruences on free completely regular semigroups”, Trans. Am. Math. Soc., 323:1 (1991), 79–92 | DOI | MR | Zbl

[5] M. Petrich, N. R. Reilly, “The modularity of the lattice of varieties of completely regular semigroups and related representations”, Glasg. Math. J., 32:2 (1990), 137–252 | DOI | MR

[6] M. V. Volkov, T. A. Ershova, “The lattice of varieties of semigroups with completely regular square”, Semigroup theory, Monash conf. semigroup theory honour G. B. Preston, Clayton, Australia, 1990, ed. T. E. Hall et al., World Scientific, Singapore, 1991, 306–322 | MR | Zbl

[7] B. M. Vernikov, M. V. Volkov, “Permutability of fully invariant congruences on relatively free semigroups”, Acta Sci. Math., 63:3–4 (1997), 437–461 | MR | Zbl

[8] B. M. Vernikov, M. V. Volkov, “Commuting fully invariant congruences on free semigroups”, Contrib. Gen. Algebra 12, ed. D. Dorninger et al., Verlag Johannes Heyn., Klagenfurt, 2000, 391–417 | MR | Zbl

[9] B. M. Vernikov, “Mnogoobraziya polugrupp s multiplikativnymi ogranicheniyami na vpolne invariantnye kongruentsii ikh svobodnykh ob'ektov”, Dokl. RAN, 384:4 (2002), 446–448 | MR | Zbl

[10] B. M. Vernikov, “Completely regular semigroup varieties whose free objects have weakly permutable fully invariant congruences”, Semigroup Forum, 68:1 (2004), 154–158 | DOI | MR | Zbl

[11] M. V. Volkov, “Mnogoobraziya polugrupp s modulyarnoi reshetkoi podmnogoobrazii”, Izv. vuzov. Matem., 1989, no. 6, 48–58

[12] M. V. Volkov, “Mnogoobraziya polugrupp s modulyarnoi reshetkoi podmnogoobrazii II”, Izv. vuzov. Matem., 1992, no. 7, 3–8 | Zbl

[13] M. V. Volkov, “Mnogoobraziya polugrupp s modulyarnoi reshetkoi podmnogoobrazii III”, Izv. vuzov. Matem., 1992, no. 8, 21–29 | MR | Zbl

[14] M. V. Volkov, “Mnogoobraziya polugrupp s modulyarnoi reshetkoi podmnogoobrazii”, Dokl. RAN, 326:3 (1992), 409–413 | Zbl

[15] I. I. Melnik, “O mnogoobraziyakh i reshetkakh mnogoobrazii polugrupp”, Issled. po algebre, vyp. 2, Saratov, 1970, 47–57 | MR

[16] B. Jónsson, “On the representation of lattices”, Math. Scand., 1:1 (1953), 193–206 | MR | Zbl

[17] G. Grettser, Obschaya teoriya reshetok, Mir, M., 1982 | MR

[18] E. A. Golubov, M. V. Sapir, “Finitno approksimiruemye mnogoobraziya polugrupp”, Izv. vuzov, Matem., 1982, no. 11, 21–29 | MR | Zbl

[19] T. E. Hall, P. R. Jones, “On the lattice of varieties of bands of groups”, Pac. J. Math., 91:2 (1980), 327–337 | MR | Zbl

[20] L. Polák, “On varieties of completely regular semigroups. I”, Semigroup Forum, 32:1 (1985), 97–123 | DOI | MR | Zbl