Semigroup Varieties on Whose Free Objects Almost All Fully Invariant Congruences are Weakly Permutable
Algebra i logika, Tome 43 (2004) no. 6, pp. 635-649
Voir la notice de l'article provenant de la source Math-Net.Ru
A semigroup variety is said to be of index $\leqslant2$ if all nil-semigroups of the variety are semigroups with zero multiplication. We describe all semigroup varieties $\mathcal V$ of index $\leqslant2$ on free objects of which every two fully invariant congruences contained in the least semilattice congruence are weakly permutable, and semigroup varieties of index $\leqslant2$ all of whose subvarieties share the above-mentioned property.
Keywords:
semigroup variety, nil-semigroup, weakly permutable congruence, fully invariant congruence.
@article{AL_2004_43_6_a0,
author = {B. M. Vernikov},
title = {Semigroup {Varieties} on {Whose} {Free} {Objects} {Almost} {All} {Fully} {Invariant} {Congruences} are {Weakly} {Permutable}},
journal = {Algebra i logika},
pages = {635--649},
publisher = {mathdoc},
volume = {43},
number = {6},
year = {2004},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/AL_2004_43_6_a0/}
}
TY - JOUR AU - B. M. Vernikov TI - Semigroup Varieties on Whose Free Objects Almost All Fully Invariant Congruences are Weakly Permutable JO - Algebra i logika PY - 2004 SP - 635 EP - 649 VL - 43 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/AL_2004_43_6_a0/ LA - ru ID - AL_2004_43_6_a0 ER -
B. M. Vernikov. Semigroup Varieties on Whose Free Objects Almost All Fully Invariant Congruences are Weakly Permutable. Algebra i logika, Tome 43 (2004) no. 6, pp. 635-649. http://geodesic.mathdoc.fr/item/AL_2004_43_6_a0/