Semigroup Varieties on Whose Free Objects Almost All Fully Invariant Congruences are Weakly Permutable
Algebra i logika, Tome 43 (2004) no. 6, pp. 635-649

Voir la notice de l'article provenant de la source Math-Net.Ru

A semigroup variety is said to be of index $\leqslant2$ if all nil-semigroups of the variety are semigroups with zero multiplication. We describe all semigroup varieties $\mathcal V$ of index $\leqslant2$ on free objects of which every two fully invariant congruences contained in the least semilattice congruence are weakly permutable, and semigroup varieties of index $\leqslant2$ all of whose subvarieties share the above-mentioned property.
Keywords: semigroup variety, nil-semigroup, weakly permutable congruence, fully invariant congruence.
@article{AL_2004_43_6_a0,
     author = {B. M. Vernikov},
     title = {Semigroup {Varieties} on {Whose} {Free} {Objects} {Almost} {All} {Fully} {Invariant} {Congruences} are {Weakly} {Permutable}},
     journal = {Algebra i logika},
     pages = {635--649},
     publisher = {mathdoc},
     volume = {43},
     number = {6},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2004_43_6_a0/}
}
TY  - JOUR
AU  - B. M. Vernikov
TI  - Semigroup Varieties on Whose Free Objects Almost All Fully Invariant Congruences are Weakly Permutable
JO  - Algebra i logika
PY  - 2004
SP  - 635
EP  - 649
VL  - 43
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2004_43_6_a0/
LA  - ru
ID  - AL_2004_43_6_a0
ER  - 
%0 Journal Article
%A B. M. Vernikov
%T Semigroup Varieties on Whose Free Objects Almost All Fully Invariant Congruences are Weakly Permutable
%J Algebra i logika
%D 2004
%P 635-649
%V 43
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2004_43_6_a0/
%G ru
%F AL_2004_43_6_a0
B. M. Vernikov. Semigroup Varieties on Whose Free Objects Almost All Fully Invariant Congruences are Weakly Permutable. Algebra i logika, Tome 43 (2004) no. 6, pp. 635-649. http://geodesic.mathdoc.fr/item/AL_2004_43_6_a0/